化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 250-258.DOI: 10.11949/0438-1157.20221608
收稿日期:
2022-11-13
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
邵双全
作者简介:
于宏鑫(1999—),男,硕士研究生,1786769195@qq.com
基金资助:
Hongxin YU(), Shuangquan SHAO()
Received:
2022-11-13
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Shuangquan SHAO
摘要:
利用分子动力学从微观角度探究不同温度、压力对水结晶过程的影响规律。模拟中采用TIP4P/ICE水模型,搭建冰-水-冰结晶模板。在温度部分,分别在六组温度工况下进行分子动力学模拟,随着盒子温度从210 K上升到250 K,盒子完全结晶的时间从78ns延长到147 ns,完全结晶后密度下降。因此,随着温度的降低以及过冷度的增加,结晶速度加快,形成冰的密度也增加。在压力部分,分别在六个压力工况下进行模拟,发现随着压力的升高,结晶时间先延长后缩短,在200 MPa时结晶时间最长(115 ns),这是由于压力的变化会导致水的冰点发生变化;压力对水结晶速度有着直接影响,高压力可以直接促进水结晶;高压下形成的冰的密度大于1000 kg/m3。
中图分类号:
于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258.
Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process[J]. CIESC Journal, 2023, 74(S1): 250-258.
冰的种类 | 冰密度/(kg/m3) |
---|---|
冰Ⅰ | 920 |
冰Ⅲ | 1140 |
冰V | 1230 |
表1 不同形态的冰的密度[30]
Table 1 The density of different forms of ice[30]
冰的种类 | 冰密度/(kg/m3) |
---|---|
冰Ⅰ | 920 |
冰Ⅲ | 1140 |
冰V | 1230 |
1 | Wang J H, Battaglia F, Wang S G, et al. Flow and heat transfer characteristics of ice slurry in typical components of cooling systems: a review[J]. International Journal of Heat and Mass Transfer, 2019, 141: 922-939. |
2 | 何国庚, 王忠衡. 冰浆流体流动与换热研究综述[J]. 制冷学报, 2005, 26(4): 1-5. |
He G G, Wang Z H. Review of study on flow and heat transfer of ice slurry[J]. Refrigeration Journal, 2005, 26(4): 1-5. | |
3 | 陆军, 许建衡, 秦自科. 冷冻外科在肝癌治疗中的应用[J]. 癌症, 2002, 21(2): 217-219. |
Lu J, Xu J H, Qin Z K. Application of cryosurgery in the treatment of liver carcinoma[J]. Chinese Journal of Cancer, 2002, 21(2): 217-219. | |
4 | Messinger B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. |
5 | Bucknell A, Mcgilvray M, Gillespie D R H, et al. A thermodynamic model for ice crystal accretion in aircraft engines: EMM-C[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121270. |
6 | Li D M, Zhu Z W, Sun D W. Effects of freezing on cell structure of fresh cellular food materials: a review[J]. Trends in Food Science & Technology, 2018, 75: 46-55. |
7 | Dalvi-Isfahan M, Jha P K, Tavakoli J, et al. Review on identification, underlying mechanisms and evaluation of freezing damage[J]. Journal of Food Engineering, 2019, 255: 50-60. |
8 | Jia G L, Chen Y M, Sun A D, et al. Control of ice crystal nucleation and growth during the food freezing process[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(3): 2433-2454. |
9 | 陈聪, 杨大章, 谢晶. 速冻食品的冰晶形态及辅助冻结方法研究进展[J]. 食品与机械, 2019, 35(8): 220-225. |
Chen C, Yang D Z, Xie J. Review on ice crystal shape and assisted freezing methods of quick-frozen food[J]. Food & Machinery, 2019, 35(8): 220-225. | |
10 | Fernández P P, Otero L, Guignon B, et al. High-pressure shift freezing versus high-pressure assisted freezing: effects on the microstructure of a food model[J]. Food Hydrocolloids, 2006, 20(4): 510-522. |
11 | Hong G P, Choi M J. Comparison of the quality characteristics of abalone processed by high-pressure sub-zero temperature and pressure-shift freezing[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 19-25. |
12 | Su G, Ramaswamy H S, Zhu S M, et al. Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method[J]. Innovative Food Science & Emerging Technologies, 2014, 26: 40-50. |
13 | Dalvi-Isfahan M, Hamdami N, Le-Bail A. Effect of freezing under electrostatic field on the quality of lamb meat[J]. Innovative Food Science & Emerging Technologies, 2016, 37: 68-73. |
14 | Dalvi-Isfahan M, Hamdami N, Le-Bail A. Effect of freezing under electrostatic field on selected properties of an agar gel[J]. Innovative Food Science & Emerging Technologies, 2017, 42: 151-156. |
15 | Jia G L, He X L, Nirasawa S, et al. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin[J]. Journal of Food Engineering, 2017, 204: 18-26. |
16 | 王鹏飞. 电磁场对细胞冻结特性的影响[D]. 天津: 天津商业大学, 2015. |
Wang P F. The effect of electromagnetic field on cell freezing properties[D]. Tianjin: Tianjin University of Commerce, 2015. | |
17 | 王亚会, 邸倩倩, 刘斌, 等. 直流磁场辅助冻结对西兰花品质的影响[J]. 食品研究与开发, 2017, 38(21): 186-190. |
Wang Y H, Di Q Q, Liu B, et al. Effects of direct-current magnetic-field-assisted freezing on broccoli quality[J]. Food Research and Development, 2017, 38(21): 186-190. | |
18 | Otero L, Pérez-Mateos M, Rodríguez A C, et al. Electromagnetic freezing: effects of weak oscillating magnetic fields on crab sticks[J]. Journal of Food Engineering, 2017, 200: 87-94. |
19 | James C, Reitz B, James S J. The freezing characteristics of garlic bulbs (Allium sativum L.) frozen conventionally or with the assistance of an oscillating weak magnetic field[J]. Food and Bioprocess Technology, 2015, 8(3): 702-708. |
20 | Saclier M, Peczalski R, Andrieu J, et al. Effect of ultrasonically induced nucleation on ice crystals' size and shape during freezing in vials[J]. Chemical Engineering Science, 2010, 65(10): 3064-3071. |
21 | Tuckerman M E, Martyna G J. Understanding modern molecular dynamics: techniques and applications[J]. The Journal of Physical Chemistry B, 2000, 104(2): 159-178. |
22 | Giuffré E, Prestipino S, Saija F, et al. Entropy from correlations in TIP4P water[J]. Journal of Chemical Theory and Computation, 2010, 6(3): 625-636. |
23 | Dodda L S, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336. |
24 | Hayward J A, Reimers J R. Unit cells for the simulation of hexagonal ice[J]. The Journal of Chemical Physics, 1997, 106(4): 1518-1529. |
25 | 许子雄, 李保国, 罗权权. 速冻食品中冰晶的研究进展[J]. 包装与食品机械, 2018, 36(2): 63-67. |
Xu Z X, Li B G, Luo Q Q. Progress in research of ice crystals in fast frozen food[J]. Packaging and Food Machinery, 2018, 36(2): 63-67. | |
26 | 魏丰君, 温志梅, 王雅静, 等. 基于回归分析的水密度与温度函数研究[J]. 盐城工学院学报(自然科学版), 2021, 34(3): 75-78. |
Wei F J, Wen Z M, Wang Y J, et al. Study on water density and temperature function based on regression analysis[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2021, 34(3): 75-78. | |
27 | Choi M J, Min S G, Hong G P. Effects of pressure-shift freezing conditions on the quality characteristics and histological changes of pork[J]. LWT - Food Science and Technology, 2016, 67: 194-199. |
28 | 李志义, 夏远景, 刘学武, 等. 高压冷冻食品的机理及应用[J]. 食品研究与开发, 2006, 27(5): 145-148. |
Li Z Y, Xia Y J, Liu X W, et al. Mechanism and application of high pressure freezing and thawing[J]. Food Research and Development, 2006, 27(5): 145-148. | |
29 | Cheng L N, Sun D W, Zhu Z W, et al. Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(4): 769-781. |
30 | 周国燕, 李红卫, 胡琦玮, 等. 食品的高压冷冻冷藏原理及应用进展[J]. 食品工业科技, 2009, 30(3): 334-336, 339. |
Zhou G Y, Li H W, Hu Q W, et al. Mechanism and application progress of high-pressure freezing of food[J]. Science and Technology of Food Industry, 2009, 30(3): 334-336, 339. |
[1] | 贾海林, 曾锦祥, 潘荣锟, 潘仕利, 周凯旋. 无氟泡沫灭火剂真火实验与分子动力学模拟[J]. 化工学报, 2024, 75(10): 3825-3834. |
[2] | 徐娜, 李子璇, 刘子璐, 吕耀东, 张释文. 溶液环境对液相纳米颗粒体系分散稳定性的影响[J]. 化工学报, 2024, 75(10): 3815-3824. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[5] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[6] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[7] | 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843. |
[8] | 刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431. |
[9] | 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827. |
[10] | 刘万强,杨帆,袁华,张远达,易平贵,周虎. 醇类有机物热传导的分子动力学模拟及微观机理研究[J]. 化工学报, 2020, 71(11): 5159-5168. |
[11] | 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165. |
[12] | 郑禾, 杨盛江, 郑永超, 崔燕, 郭旋, 钟近艺, 周健. 尿素和二甲基亚砜诱导DhaA变性的分子动力学模拟[J]. 化工学报, 2019, 70(11): 4337-4345. |
[13] | 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347. |
[14] | 张晋玮, 成洪业, 陈立芳, 漆志文. [BMIM]HSO4离子液体腐蚀性的实验与分子模拟[J]. 化工学报, 2018, 69(2): 808-814. |
[15] | 涂润春, 廖全文, 刘志春, 刘伟. 扭转作用对聚乙烯链导热性能的影响[J]. 化工学报, 2017, 68(S1): 60-65. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 468
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||