化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3180-3190.DOI: 10.11949/.0438-1157.20191481
收稿日期:
2019-12-06
修回日期:
2020-01-29
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
杨辉
作者简介:
杨辉(1965—),男,博士,教授,基金资助:
Hui YANG1,2(),Wenhao DAI1,2,Rongxiu LU1,2,Jianyong ZHU1,2
Received:
2019-12-06
Revised:
2020-01-29
Online:
2020-07-05
Published:
2020-07-05
Contact:
Hui YANG
摘要:
由于基于稀土萃取机理的流程仿真模型没有考虑萃取槽的萃取效率,导致模型输出的各级组分含量难以符合工业实际工况,为此,本文将机理模型与数据驱动的方法相结合,建立基于分离系数校正的稀土萃取流程模拟。首先,在相对分离系数的稀土萃取流程机理模型的基础上,引入分离系数校正值,实现对稀土萃取机理模型的扩充;其次,运用数据驱动方法,利用斐波那契树优化算法对各级校正值进行优化求解,并使用MATLAB GUI,开发稀土萃取流程模拟系统;最后,结合工业现场实际数据,验证本文流程模拟在工况改变时的动态性能,结果表明本文所建流程模拟符合稀土萃取流程实际工况。
中图分类号:
杨辉, 代文豪, 陆荣秀, 朱建勇. 基于分离系数校正的稀土萃取流程模拟[J]. 化工学报, 2020, 71(7): 3180-3190.
Hui YANG, Wenhao DAI, Rongxiu LU, Jianyong ZHU. Simulation of rare earth extraction process based on separation coefficient correction[J]. CIESC Journal, 2020, 71(7): 3180-3190.
级数 | 相邻分离系数 | 相对分离系数 |
---|---|---|
萃取段 | ||
进料级 | ||
洗涤段 |
表1 稀土萃取分离各级中的实际分离系数
Table 1 Actual separation coefficient in different stages of rare earth extraction and separation
级数 | 相邻分离系数 | 相对分离系数 |
---|---|---|
萃取段 | ||
进料级 | ||
洗涤段 |
级序 | G | |
---|---|---|
1 | ||
…i… | … | …W… |
n-1 | W | |
n | W | |
n+1 | W | |
…j… | … | …W… |
n+m-1 | W | |
n+m | W |
表2 有机相进料体系的物料分布
Table 2 Component distribution of organic phase feed system
级序 | G | |
---|---|---|
1 | ||
…i… | … | …W… |
n-1 | W | |
n | W | |
n+1 | W | |
…j… | … | …W… |
n+m-1 | W | |
n+m | W |
参数 | 数值 |
---|---|
料液中Ce组分含量(质量分数) | 0.4445 |
料液中Pr组分含量(质量分数) | 0.1842 |
料液中Nd组分含量(质量分数) | 0.3713 |
Ce/Pr的分离系数 | 2.03 |
Pr/Nd的分离系数 | 1.55 |
萃取段级数n | 26 |
洗涤段级数m | 34 |
萃取量 | 0.99 |
出口指标PA,PB | 0.9995,0.9995 |
表3 CePr/Nd萃取过程主要工艺指标
Table 3 Main process indexes of CePr/Nd extraction process
参数 | 数值 |
---|---|
料液中Ce组分含量(质量分数) | 0.4445 |
料液中Pr组分含量(质量分数) | 0.1842 |
料液中Nd组分含量(质量分数) | 0.3713 |
Ce/Pr的分离系数 | 2.03 |
Pr/Nd的分离系数 | 1.55 |
萃取段级数n | 26 |
洗涤段级数m | 34 |
萃取量 | 0.99 |
出口指标PA,PB | 0.9995,0.9995 |
P-Q | MIN | MAX | MEAN | STD |
---|---|---|---|---|
4-5 | 6.05×10-11 | 2.21×10-8 | 7.34×10-9 | 7.64×10-9 |
4-6 | 2.51×10-12 | 8.94×10-9 | 1.76×10-9 | 2.94×10-9 |
4-7 | 6.13×10-13 | 6.87×10-9 | 2.35×10-9 | 2.12×10-9 |
4-8 | 1.33×10-16 | 2.38×10-9 | 3.50×10-10 | 7.38×10-10 |
4-9 | 9.83×10-15 | 4.65×10-9 | 7.76×10-10 | 1.44×10-9 |
4-10 | 1.11×10-13 | 1.15×10-9 | 1.90×10-10 | 3.54×10-10 |
5-6 | 7.10×10-18 | 1.36×10-8 | 2.49×10-9 | 4.39×10-9 |
5-7 | 6.13×10-13 | 2.89×10-9 | 1.19×10-9 | 1.02×10-9 |
5-8 | 3.51×10-19 | 2.88×10-10 | 3.73×10-11 | 8.97×10-11 |
5-9 | 4.19×10-17 | 1.00×10-9 | 1.65×10-10 | 3.07×10-10 |
5-10 | 2.58×10-16 | 2.32×10-10 | 4.52×10-11 | 8.53×10-11 |
6-7 | 7.41×10-19 | 6.01×10-10 | 7.35×10-11 | 1.86×10-10 |
6-8 | 3.33×10-19 | 2.34×10-12 | 3.94×10-13 | 7.37×10-13 |
6-9 | 3.33×10-19 | 2.46×10-9 | 2.68×10-10 | 7.72×10-10 |
6-10 | 3.33×10-19 | 1.21×10-10 | 2.70×10-11 | 4.55×10-11 |
7-8 | 7.62×10-17 | 1.09×10-9 | 1.65×10-10 | 3.50×10-10 |
7-9 | 3.33×10-19 | 4.95×10-10 | 9.44×10-11 | 1.95×10-10 |
7-10 | 3.33×10-19 | 6.71×10-10 | 6.72×10-11 | 2.12×10-10 |
8-9 | 3.33×10-19 | 1.00×10-9 | 2.00×10-10 | 3.58×10-10 |
8-10 | 3.33×10-19 | 1.33×10-10 | 2.48×10-11 | 5.15×10-11 |
9-10 | 3.90×10-18 | 6.12×10-11 | 7.47×10-12 | 1.90×10-11 |
表4 FTO选取不同参数的性能指标
Table 4 Performance indexs of FTO with different parameters
P-Q | MIN | MAX | MEAN | STD |
---|---|---|---|---|
4-5 | 6.05×10-11 | 2.21×10-8 | 7.34×10-9 | 7.64×10-9 |
4-6 | 2.51×10-12 | 8.94×10-9 | 1.76×10-9 | 2.94×10-9 |
4-7 | 6.13×10-13 | 6.87×10-9 | 2.35×10-9 | 2.12×10-9 |
4-8 | 1.33×10-16 | 2.38×10-9 | 3.50×10-10 | 7.38×10-10 |
4-9 | 9.83×10-15 | 4.65×10-9 | 7.76×10-10 | 1.44×10-9 |
4-10 | 1.11×10-13 | 1.15×10-9 | 1.90×10-10 | 3.54×10-10 |
5-6 | 7.10×10-18 | 1.36×10-8 | 2.49×10-9 | 4.39×10-9 |
5-7 | 6.13×10-13 | 2.89×10-9 | 1.19×10-9 | 1.02×10-9 |
5-8 | 3.51×10-19 | 2.88×10-10 | 3.73×10-11 | 8.97×10-11 |
5-9 | 4.19×10-17 | 1.00×10-9 | 1.65×10-10 | 3.07×10-10 |
5-10 | 2.58×10-16 | 2.32×10-10 | 4.52×10-11 | 8.53×10-11 |
6-7 | 7.41×10-19 | 6.01×10-10 | 7.35×10-11 | 1.86×10-10 |
6-8 | 3.33×10-19 | 2.34×10-12 | 3.94×10-13 | 7.37×10-13 |
6-9 | 3.33×10-19 | 2.46×10-9 | 2.68×10-10 | 7.72×10-10 |
6-10 | 3.33×10-19 | 1.21×10-10 | 2.70×10-11 | 4.55×10-11 |
7-8 | 7.62×10-17 | 1.09×10-9 | 1.65×10-10 | 3.50×10-10 |
7-9 | 3.33×10-19 | 4.95×10-10 | 9.44×10-11 | 1.95×10-10 |
7-10 | 3.33×10-19 | 6.71×10-10 | 6.72×10-11 | 2.12×10-10 |
8-9 | 3.33×10-19 | 1.00×10-9 | 2.00×10-10 | 3.58×10-10 |
8-10 | 3.33×10-19 | 1.33×10-10 | 2.48×10-11 | 5.15×10-11 |
9-10 | 3.90×10-18 | 6.12×10-11 | 7.47×10-12 | 1.90×10-11 |
组分 | 含量(质量分数) |
---|---|
Ce | 0.5124 |
Pr | 0.1468 |
Nd | 0.3408 |
表5 CePr/Nd萃取过程料液组成
Table 5 Component of feed in CePr/Nd extraction process
组分 | 含量(质量分数) |
---|---|
Ce | 0.5124 |
Pr | 0.1468 |
Nd | 0.3408 |
组分 | MEANRE/% | MAXRE/% | RMSE |
---|---|---|---|
Ce | 0.3894 | 4.4792 | 6.706×10-5 |
Pr | 0.3513 | 3.9512 | 4.228×10-5 |
Nd | 0.1791 | 3.7665 | 3.9071×10-5 |
表6 流程模拟系统的性能指标
Table 6 Performance standard value calculated by process simulation system
组分 | MEANRE/% | MAXRE/% | RMSE |
---|---|---|---|
Ce | 0.3894 | 4.4792 | 6.706×10-5 |
Pr | 0.3513 | 3.9512 | 4.228×10-5 |
Nd | 0.1791 | 3.7665 | 3.9071×10-5 |
1 | 徐光宪. 稀土[M]. 北京: 冶金工业出版社, 2012. |
Xu G X. Rare Earths[M]. Beijing: Metallurgical Industry Press, 2012. | |
2 | 吴声, 廖春生, 贾江涛, 等. 多组分多出口稀土串级萃取静态优化设计研究(I): 静态设计算法[J]. 中国稀土学报, 2004, 22(1): 17-21. |
Wu S, Liao C S, Jia J T, et al. Static optimization design of multi-component and multi-export rare earth cascade extraction (Ⅰ): Static design algorithm[J]. Journal of the Chinese Rare Earth Society, 2004, 22(1): 17-21. | |
3 | 吴声, 廖春生, 贾江涛, 等. 多组分多出口稀土串级萃取静态优化设计研究(Ⅱ): 静态程序设计及动态仿真验证[J]. 中国稀土学报, 2004, 22(2): 171-176. |
Wu S, Liao C S, Jia J T, et al. Static optimization design of multi-component and multi-export rare earth cascade extraction (Ⅱ): Static programming and dynamic simulation verification[J]. Journal of the Chinese Rare Earth Society, 2004, 22(2): 171-176. | |
4 | 王振华. 多组分稀土萃取分离工艺的理论设计[J]. 稀土, 1995, 16(6): 10-14. |
Wang Z H. Theoretical design of multi-component rare earth extraction and separation process[J]. Chinese Rare Earths, 1995, 16(6): 10-14. | |
5 | 钟学明. 多组分稀土串级萃取有效分离系数的研究[J]. 稀土, 2009, 30(2): 57-60. |
Zhong X M. Study on effective separation factor for multi-component rare earths in counter-current extraction[J]. Chinese Rare Earths, 2009, 30(2): 57-60. | |
6 | 丁永权, 衷路生, 杨辉. 任意组分两出口体系串级萃取静态优化设计研究[J]. 中国稀土学报, 2010, 28(1): 53-59. |
Ding Y Q, Zhong L S, Yang H. Study on static optimization design of two outlets cascade extraction for any component[J]. Journal of the Chinese Rare Earth Society, 2010, 28(1): 53-59. | |
7 | 丁永权, 喻民, 刘正平, 等. 多组分稀土体系串级萃取分离理论级数计算公式[J]. 稀土, 2003, 24(3): 8-10+30. |
Ding Y Q, Yu M, Liu Z P, et al. Formulate for calculating the number of stages in multi-component rare earth elements cascade extraction[J]. Chinese Rare Earths, 2003, 24(3): 8-10+30. | |
8 | Ryu K H, Lee C, Lee G G, et al. Modeling and simulation of solvent extraction processes for purifying rare earth metals with PC88A[J]. Korean Journal of Chemical Engineering, 2013, 30(10): 1946-1953. |
9 | Yun C Y, Lee C, Lee G G, et al. Modeling and simulation of multicomponent solvent extraction processes to purify rare earth metals[J]. Hydrometallurgy, 2016, 159: 40-45. |
10 | Anitha M, Singh H. Artificial neural network simulation of rare earths solvent extraction equilibrium data[J]. Desalination, 2008, 232(1/2/3): 59-70. |
11 | 王振华. 稀土串级萃取分离过程的数学模型和计算机仿真[J]. 中国稀土学报, 2002, 20(s3): 132-135. |
Wang Z H. Mathematical model and computer simulation of separation process of rare earth cascade extraction[J]. Journal of the Chinese Rare Earth Society, 2002, 20(s3): 132-135. | |
12 | Serralunga F J, Mussati M C, Aguirre P A. Model adaptation for real-time optimization in energy systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16795-16810. |
13 | Zhang J, Mao Z Z, Jia R D, et al. Real time optimization based on a serial hybrid model for gold cyanidation leaching process[J]. Minerals Engineering, 2015, 134(70): 467-476. |
14 | 董易, 施心陵, 王霞, 等. 斐波那契树优化算法求解多峰函数全局最优解的可达性分析[J]. 自动化学报, 2018, 44(9): 145-155. |
Dong Y, Shi X L, Wang X, et al. On accessibility of Fibonacci tree optimization algorithm for global optima of multi-modal functions[J]. Acta Automatica Sinica, 2018, 44(9): 145-155. | |
15 | 王霞, 吕丹桔, 董易, 等. 基于斐波那契树优化算法的切削参数多方案优化方法[J]. 控制与决策, 2018, 33(8): 1373-1381. |
Wang X, Lyu D J, Dong Y, et al. Cutting parameters multi-scheme optimization based on Fibonacci tree optimization algorithm[J]. Control and Decision, 2018, 33(8): 1373-1381. | |
16 | 贾文君, 张福景, 柴天佑. 稀土串级萃取分离过程智能优化控制仿真系统[J]. 系统仿真学报, 2007, 19(2): 304-307. |
Jia W J, Zhang F J, Chai T Y. Simulation system for intelligent optimal control of rare earth cascade extraction separation process[J]. Journal of System Simulation, 2007, 19(2): 304-307. | |
17 | Yang H, Xu F P, Lu R X, et al. Component content distribution profile control in rare earth countercurrent extraction process[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 192-198. |
18 | 丁永权, 刘正平, 陈立红. 多组分稀土体系串级萃取分离理论(Ⅰ): 多组分稀土体系串级萃取分离的静态平衡出口级组成的计算[J]. 中国稀土学报, 2002, (S2): 159-161. |
Ding Y Q, Liu Z P, Chen L H. Theory of multistage rare earth system cascade extraction separation (I): Calculation of static equilibrium export stage composition of multicomponent rare earth system by cascade extraction separation[J]. Journal of the Chinese Rare Earth Society, 2002, (S2): 159-161. | |
19 | 朱建勇, 杨辉, 陆荣秀, 等. 基于静态设定和动态补偿的铈镨钕萃取过程药剂量优化控制[J]. 自动化学报, 2019, 45(6): 1186-1197. |
Zhu J Y, Yang H, Lu R X, et al. Static setting and dynamic compensation based optimal control for the flow rate of the reagent in CePr/Nd extraction process[J]. Acta Automatica Sinica, 2019, 45(6): 1186-1197. | |
20 | 杨辉, 朱凡, 陆荣秀, 等. 基于ANFIS模型的Pr/Nd萃取过程预测控制[J]. 化工学报, 2016, 67(3): 982-990. |
Yang H, Zhu F, Lu R X, et al. ANFIS model-based predictive control for Pr/Nd cascade extraction process[J]. CIESC Journal, 2016, 67(3): 982-990. | |
21 | Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics[J]. Information Sciences, 2013, 237: 82-117. |
22 | 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558. |
Ning A P, Zhang X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558. | |
23 | Wang J, Fan X, Zhang C, et al. A graph-based ant colony optimization approach for integrated process planning and scheduling[J]. Chinese Journal of Chemical Engineering, 2014, 22: 748-753. |
24 | Xu Y, Wang Z Y, Zhu Q X. An improved hybrid genetic algorithm for chemical plant layout optimization with novel non-overlapping and toxic gas dispersion constraints [J]. Chinese Journal of Chemical Engineering, 2013, 21(4): 412-419. |
25 | de Castro L N, von Zuben F J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251. |
26 | Castro L N D, Timmis J. An artificial immune network for multimodal function optimization[C]// Conference on Genetic & Evolutionary Computation, 2005. |
27 | Li B L, Shi X L, Gou C X, et al. Multivariant optimization algorithm for multimodal optimization[J]. Applied Mechanics and Materials, 2014, 483: 453-457. |
28 | Gou C X, Shi X L, Li B L, et al. Multivariant optimization algorithm with absorption for multimodal optimization[J]. Applied Mechanics & Materials, 2014, 483: 458-464. |
29 | Zhang S H, Shi X L, Li P, et al. Golden section Fibonacci tree optimization algorithm for multimodal function optimization[J]. Acta Electronica Sinica, 2017, 45(4): 791-798. |
30 | Subasi M, Yildirim N, Bünyamin Y. An improvement on Fibonacci search method in optimization theory[J]. Applied Mathematics and Computation, 2004, 147(3): 893-901. |
[1] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[2] | 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215. |
[3] | 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269. |
[4] | 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510. |
[5] | 朱建勇, 张旭乾, 杨辉, 陆荣秀. 单光照条件变化的镨/钕元素组分含量软测量[J]. 化工学报, 2019, 70(2): 780-788. |
[6] | 陆荣秀, 何丽娟, 杨辉, 张国庆. 稀土萃取分离过程组分含量区间控制方法[J]. 化工学报, 2017, 68(3): 1058-1064. |
[7] | 陆荣秀, 叶兆斌, 杨辉, 何峰. 镨/钕萃取过程组分含量多RBF模型预测[J]. 化工学报, 2016, 67(3): 974-981. |
[8] | 郑捷宇, 李广鹏, 厉彦忠, 司标, 杨宇杰. 利用LNG冷能的空分系统换热网络布置及多能级匹配性能[J]. 化工学报, 2015, 66(S2): 76-84. |
[9] | 范洋, 李文英, 谢克昌. 褐煤热解-气化-制油系统的CO2减排策略[J]. 化工学报, 2015, 66(8): 3204-3209. |
[10] | 董晓杨, 赵浩, 冯毅萍, 荣冈. 基于流程模拟的常减压装置过程操作与生产计划集成优化[J]. 化工学报, 2015, 66(1): 237-243. |
[11] | 王超, 陈冠益, 兰维娟, 马文超. 生物质快速热解制油试验及流程模拟[J]. 化工学报, 2014, 65(2): 679-683. |
[12] | 吕陈秋,顾爱军,张宇航,谢振威. 基于Aspen Polymer的聚酯聚合反应研究及流程模拟[J]. 化工进展, 2014, 33(05): 1086-1092. |
[13] | 隋 红1,葛成荫1,李鑫钢1,2. 页岩油冷凝回收油洗工艺模拟与优化[J]. 化工进展, 2013, 32(07): 1519-1525. |
[14] | 张健民,赵金海,陈 珺. MTBE深度脱硫技术的应用[J]. 化工进展, 2013, 32(06): 1453-1456. |
[15] | 邢建良, 黄秀辉, 袁渭康. 工业醋酸脱水过程五元体系非均相共沸精馏的流程模拟[J]. 化工学报, 2012, 63(9): 2681-2687. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||