化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4504-4510.doi: 10.11949/0438-1157.20210281

• 热力学 • 上一篇    下一篇

2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟

徐健元(),吴艳阳(),徐菊美,彭阳峰   

  1. 华东理工大学化工学院,上海 200237
  • 收稿日期:2021-02-22 修回日期:2021-05-12 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 吴艳阳 E-mail:jianyuanxu@126.com;wyywitty@ecust.edu.cn
  • 作者简介:徐健元(1996—),男,硕士研究生,jianyuanxu@126.com

Study on vapor-liquid equilibria and distillation simulation of 1,3,5-trimethylbenzene-1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene-2-ethyltoluene at 2 kPa

Jianyuan XU(),Yanyang WU(),Jumei XU,Yangfeng PENG   

  1. College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2021-02-22 Revised:2021-05-12 Published:2021-09-05 Online:2021-09-05
  • Contact: Yanyang WU E-mail:jianyuanxu@126.com;wyywitty@ecust.edu.cn

摘要:

均三甲苯是一种重要的化工原料,通常存在于重整重芳烃中,其中均三甲苯与偏三甲苯、邻甲乙苯的分离较为困难。测定了2 kPa下均三甲苯(1)-偏三甲苯(2)、均三甲苯(1)-邻甲乙苯(3)两个体系的汽液相平衡数据,并分别采用NRTL和UNIQUAC活度系数模型对相平衡数据进行关联,回归获得二元交互参数,并进行了热力学一致性检验。结果表明,在2 kPa下,均三甲苯与邻甲乙苯无法通过普通精馏实现分离。通过对均三甲苯-偏三甲苯-邻甲乙苯体系进行烷基化反应,而后分别采用单塔减压精馏和双塔减压精馏对反应产物的分离进行精馏模拟,得出较优工艺为双塔连续减压精馏,两塔塔板数分别为50,回流比分别为7和8,此时均三甲苯纯度可达98%(质量)。该研究不仅补充了汽液相平衡数据库,也为低压下C9体系的分离工艺设计提供参考。

关键词: 三甲苯, 汽液平衡, 分离, 活度系数, 流程模拟

Abstract:

1,3,5-trimethylbenzene is an important chemical raw material and usually exists in reformed heavy aromatics. It is difficult to separate 1,3,5-trimethylbenzene from 1,2,4-trimethylbenzene and 2-ethyltoluene in the C9 aromatics mixture. The vapor-liquid equilibrium (VLE) data of 1,?3,?5-trimethylbenzene (1)?-1,?2,?4-trimethylbenzene (2) and 1,3,5-trimethylbenzene (1)-2-ethyltoluene (3) were measured at 2 kPa and then correlated by the activity coefficient models NRTL and UNIQUAC. The binary interaction parameters were obtained through regression. The thermodynamic consistency was checked as well. The results showed that 1,3,5-trimethylbenzene and 2-ethyltoluene could hardly be separated at 2 kPa by ordinary distillation. After the alkylation reaction of the ternary system (1,3,5-trimethylbenzene-1,2,4-trimethylbenzene-2-ethyltoluene), single-column and double-column distillation processes at low pressure were used to separate the reaction products by simulation, respectively. Compared to the single-column distillation process, the double-column one presented a better separation performance. The suitable separation parameters were obtained as follows: the number of stages in both columns was 50, and the reflux ratios were 7 and 8 respectively. The purity of 1,3,5-trimethylbenzene could reach 98%(mass) accordingly. This study not only fills in VLE database, but also provides a feasible method for the separation of C9 aromatics at low pressure.

Key words: trimethylbenzene, vapor-liquid equilibria, separation, activity coefficient, process simulation

中图分类号: 

  • TQ 013.1

表1

实验原料的沸点及Antoine常数"

原料沸点(2 kPa)/KAntoine常数②[18]Antione常数适用的温度范围/K
ABC
均三甲苯329.417.074361569.622209.578322.15~466.15
偏三甲苯332.437.043831573.267208.564325.15~471.15
邻甲乙苯329.277.003141535.374207.300321.15~467.15

图1

改进的Rose汽液相平衡釜"

表2

2 kPa下的汽液相平衡数据"

T/Kx1y1γ1γ2
均三甲苯(1)-偏三甲苯(2)
332.430.00000.00001.0000
332.050.05980.07591.11201.0016
331.790.10610.13291.11171.0014
331.520.15090.18751.11771.0013
331.320.19800.24041.10311.0011
331.050.26010.30761.08911.0026
330.880.30510.35471.07981.0035
330.670.36150.40961.06351.0099
330.530.40420.45071.05391.0140
330.420.44510.48721.04031.0221
330.200.52760.56231.02421.0362
329.990.62350.64851.01021.0553
329.850.69700.71551.00411.0689
329.720.76980.78301.00141.0802
329.640.82400.83451.00121.0819
329.540.89500.90161.00091.0838
329.470.94890.95231.00061.0834
329.411.00001.00001.0000
均三甲苯(1)-邻甲乙苯(3)
329.270.00000.00001.0000
329.280.05570.05541.00001.0000
329.290.11080.11041.00001.0000
329.290.14970.14931.00001.0000
329.300.20090.20021.00001.0000
329.310.26890.26801.00001.0000
329.310.30540.30441.00001.0000
329.320.34400.34251.00001.0000
329.330.41970.41811.00001.0000
329.340.47760.47581.00001.0000
329.350.58420.58251.00001.0000
329.370.69350.69241.00001.0000
329.380.77430.77371.00001.0000
329.390.83490.83451.00001.0000
329.400.88930.88901.00001.0000
329.400.92830.92801.00001.0000
329.411.00001.00001.0000

图2

均三甲苯(1)-偏三甲苯(2)体系lnγ1γ2-x1图"

图3

均三甲苯(1)-邻甲乙苯(3)体系lnγ1γ3-x1图"

表3

2 kPa下系统活度系数模型参数关联及回归偏差"

模型模型参数AAD
aijajibijbjicij?T/K?p/kPa?x1?y1
均三甲苯(1)-偏三甲苯(2)
NRTL6.6444-1.8407-2160.15613.620.30.0204.73×10-72.15×10-50.0025
UNIQUAC-3.83992.60591254.69-856.90.0204.76×10-72.14×10-50.0025
均三甲苯(1)-邻甲乙苯(3)
NRTL-7.40307.77262411.95-2533.050.30.0031.04×10-91.43×10-50.0064
UNIQUAC0.0884-0.0830-35.9734.130.0031.03×10-91.43×10-50.0064

图4

均三甲苯(1)-偏三甲苯(2)体系的模拟值(NRTL模型)与实验值对比"

图5

均三甲苯(1)-邻甲乙苯(3)体系的模拟值(NRTL模型)与实验值对比"

图6

精馏模拟流程图"

表4

精馏塔参数"

参数单塔减压精馏双塔连续减压精馏
T11T21T22
塔顶压力/kPa222
塔板数n1205050
回流比R1278
塔顶采出率0.700.650.60
再沸器热负荷QR/kW97.429656.800237.1880
1 唐卫东. 连续重整重芳烃综合利用工艺的探讨[J]. 石油炼制与化工, 2006, 37(11): 35-39.
Tang W D. Perspectives on comprehensive utilization of heavy aromatics from CCR unit[J]. Petroleum Processing and Petrochemicals, 2006, 37(11): 35-39.
2 高丽霞, 刘植昌, 高金森, 等. 离子液体中苯与C9芳烃烷基转移反应[J]. 化学反应工程与工艺, 2005, 21(3): 274-279.
Gao L X, Liu Z C, Gao J S, et al. Transalkylation of C9 aromatic hydrocarbon and benzene in ionic liquids[J]. Chemical Reaction Engineering and Technology, 2005, 21(3): 274-279.
3 陈伴生. 重整C9芳烃的综合利用: 利用烷基化分离方法提纯均三甲苯[D]. 南京: 东南大学, 2006: 5-6.
Chen B S. Complete utilization of C9 aromatics mixture—purify mesitylene by alkylation distillation[D]. Nanjing: Southeast University, 2006: 5-6.
4 冯海强, 傅吉全. 采用分离集成技术从碳九芳烃中提取均三甲苯[J]. 化工进展, 2011, 30(3): 478-482.
Feng H Q, Fu J Q. Extraction of mesitylene from C9 arene by integrated separation technology[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 478-482.
5 李伟宏, 任海伦, 张敬, 等. 一种差压热耦合萃取精馏精制均三甲苯的方法: 104591952A[P]. 2015-05-06.
Li W H, Ren H L, Zhang J, et al. Method for refining mesitylene by virtue of differential pressure thermal coupling rectification: 104591952A[P]. 2015-05-06.
6 冯海强, 傅吉全. 萃取精馏分离均三甲苯的实验和模拟[J]. 石油化工, 2011, 40(2): 157-160.
Feng H Q, Fu J Q. Experiment and simulation of separating mesitylene by extractive distillation[J]. Petrochemical Technology, 2011, 40(2): 157-160.
7 徐广宇, 徐建兵, 廖丽萍, 等. 2, 4, 6-三甲基苯甲酸的合成[J]. 化工进展, 2007, 26(3): 430-432.
Xu G Y, Xu J B, Liao L P, et al. Synthesis of 2, 4, 6-trimethylbenzoic acid[J]. Chemical Industry and Engineering Progress, 2007, 26(3): 430-432.
8 项纯, 林光伟, 杨志萍, 等. 一种液相氧化法制备均苯三甲酸/偏苯三甲酸的方法: 110143862A[P]. 2019-08-20.
Xiang C, Lin G W, Yang Z P, et al. Liquid phase oxidation method for preparing trimesic acid/trimellitic acid: 110143862A[P]. 2019-08-20.
9 曹正国, 李江华, 王福, 等. 均三甲苯低温液相连续氧化生产均苯三甲酸的方法: 110642699A[P]. 2020-01-03.
Cao Z G, Li J H, Wang F, et al. Method for producing trimesic acid through low-temperature liquid-phase continuous oxidation of mesitylene: 110642699A[P]. 2020-01-03.
10 赵开鹏, 韩松. 重整C9芳烃的综合利用[J]. 石油化工, 1999, 28(7): 57-67.
Zhao K P, Han S. Comprehensive utilization of reformed C9 aromatics[J]. Petrochemical Technology, 1999, 28(7): 57-67.
11 王明. 偏三甲苯异构化制取均三甲苯研究[D]. 天津: 天津大学, 2014: 2-4.
Wang M. Research on the production of 1, 3, 5-trimethylbenzene by the isomerization of 1, 2, 4-trimethylbenzene[D]. Tianjin: Tianjin University, 2014: 2-4.
12 匡华. C9芳烃中均三甲苯与邻甲乙苯的分离研究[J]. 化学反应工程与工艺, 2004, 20(2): 184-187.
Kuang H. Separation of mesitylene and o-methylethylbenzene from C9 aromatic[J]. Chemical Reaction Engineering and Technology, 2004, 20(2): 184-187.
13 Zhu M L, Sun J S, Tian Y F, et al. Design and application of a highly efficient separation technology for C9 arenes[J]. Asia-Pacific Journal of Chemical Engineering, 2007, 2(4): 278-281.
14 郭乃龄, 郑金璇, 张杏芳, 等. 均三甲苯-偏三甲苯-连三甲苯汽液平衡的研究[J]. 化学工程, 1983, 11(4): 27-32.
Guo N L, Zheng J X, Zhang X F, et al. Research on vapor-liquid equilibrium of 1, 3, 5-trimethylbenzene-1, 2, 4-trimethylbenze-1, 2, 3-trimethylbenzene[J]. Chemical Engineering (China), 1983, 11(4): 27-32.
15 Fu J Q, Liu X J, Fu D. Study on vapor liquid equilibrium for C9 separation by azeotropic distillation[J]. China Petroleum Processing & Petrochemical Technology, 2012, 14(1): 80-86.
16 肖文, 周大军. 重整C9芳烃中提取高纯度均三甲苯的实验研究[J]. 石油学报(石油加工), 2010, 26(S1): 93-97.
Xiao W, Zhou D J. Experimental study on manufacturing high purity mesitylene from C9 arene cut of reforming[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(S1): 93-97.
17 程能林. 溶剂手册[M]. 4版. 北京: 化学工业出版社, 2007: 216-218.
Cheng N L. Handbook of Solvents[M]. 4th ed. Beijing: Chemical Industry Press, 2007: 216-218.
18 Yaws C L, Yang H C. To estimate vapor pressure easily[J]. Hydrocarbon Processing, 1989, 68(10): 65-66.
19 Xu J M, Li S T, Zeng Z X, et al. Isobaric vapor-liquid equilibrium for binary system of isoamyl DL-lactate and isoamyl alcohol at 25.0, 50.0, and 101.3 kPa[J]. Journal of Chemical & Engineering Data, 2020, 65(1): 81-87.
20 徐勉, 吴亮衡, 张杰. 2,4-TDI/共沸剂二元体系的汽液平衡数据的测定及共沸组成分析[J]. 化工学报, 2016, 67(5): 1673-1679.
Xu M, Wu L H, Zhang J. Measurement of vapor-liquid equilibrium data and azeotropic analysis for 2, 4-toluene diisocyanate + entrainer[J]. CIESC Journal, 2016, 67(5): 1673-1679.
21 Song Y Z, Wang Y, Zhang X B, et al. Isobaric vapor-liquid equilibrium measurements of binary systems of dimethyl carbonate with dimethyl sulfoxide, anisole, and diethyl oxalate at 101.3 kPa[J]. Journal of Chemical & Engineering Data, 2021, 66(3): 1367-1375.
22 宋卓栋, 张作毅, 潘学龙, 等. 聚甲醛二甲醚体系汽液平衡数据的测定与关联[J]. 化工学报, 2020, 71: 1-6.
Song Z D, Zhang Z Y, Pan X L, et al. Determination and correlation of vapor-liquid equilibrium for polyoxymethylene dimethyl ether system[J]. CIESC Journal, 2020, 71: 1-6.
23 周峰, 陈长旭, 许春建. 乙酸异戊酯+异戊醇和乙酸异戊酯+正己醇体系汽液平衡[J]. 化工学报, 2017, 68(2): 560-566.
Zhou F, Chen C X, Xu C J. Isobaric vapor-liquid equilibrium for binary systems of isoamyl acetate + isoamyl alcohol and isoamyl acetate + n-hexanol at 50.00 and 101.33 kPa[J]. CIESC Journal, 2017, 68(2): 560-566.
24 Herington E F G. A thermodynamic test for the internal consistency of experimental data on volatility ratios[J]. Nature, 1947, 160(4070): 610-611.
25 Zhong Y, Wu Y Y, Zhu J W, et al. Thermodynamics in separation for the ternary system 1, 2-ethanediol + 1, 2-propanediol + 2, 3-butanediol[J]. Industrial & Engineering Chemistry Research, 2014, 53(30): 12143-12148.
26 谈金辉, 徐菊美, 施云海. 常压下乙醇-水-醋酸钾系统汽液平衡数据的测定与关联[J]. 化工学报, 2020, 71(8): 3444-3451.
Tan J H, Xu J M, Shi Y H. Measurement and correlation of vapor-liquid equilibria for ethanol-water-potassium acetate system under atmospheric pressure[J]. CIESC Journal, 2020, 71(8): 3444-3451.
27 Yang S K, Zhang Y P, Wang X J, et al. Isobaric VLE data for 1-methyl-3-ethylbenzene or 1-methyl-4-ethylbenzene + 1, 2, 4-trimethylbenzene at 20 kPa[J]. The Journal of Chemical Thermodynamics, 2013, 60: 52-56.
28 Yang S K, Zhang Y P, Wang X J, et al. Isobaric vapor-liquid equilibrium data for the system of 1-methyl-2-ethylbenzene + 1, 2, 4-trimethylbenzene at 10 kPa[J]. Journal of Chemical & Engineering Data, 2013, 58(2): 398-401.
29 张卫江, 付强, 李汝贤, 等. 异丁烯烷基化法分离提纯均三甲苯[J]. 天津大学学报, 2005, 38(6): 518-522.
Zhang W J, Fu Q, Li R X, et al. Production of high-purity 1, 3, 5-trimethyl benzene by isobutene alkylation[J]. Journal of Tianjin University, 2005, 38(6): 518-522.
30 张卫江, 张雪梅, 韩振为, 等. 偏三甲苯生产均三甲苯工艺[J]. 化工学报, 2002, 53(3): 274-279.
Zhang W J, Zhang X M, Han Z W, et al. Technology of production of 1, 3, 5-trimethylbenzene from 1, 2, 4-trimethylbenzene[J]. CIESC Journal, 2002, 53(3): 274-279.
31 任慧勇, 杨卫兰, 张蓓. 中国重整C9+重芳烃分离和利用机会分析[J]. 现代化工, 2020, 40(8): 11-14, 20.
Ren H Y, Yang W L, Zhang P. Opportunities for separation and utilization of C9+ heavy aromatics from reformation in China[J]. Modern Chemical Industry, 2020, 40(8): 11-14, 20.
[1] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[2] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[3] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[4] 高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420.
[5] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[6] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[7] 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69.
[8] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[9] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[10] 周闻, 鄂承林, 李永祺, 郭玉娇, 李子轩, 卢春喜. 新型多旋臂气液分离器入口旋流头的预分离特性研究[J]. 化工学报, 2021, 72(9): 4775-4785.
[11] 陈志荣, 童云, 袁慎峰, 尹红. 蛋氨酸在KCl溶液中的解离常数与活度系数[J]. 化工学报, 2021, 72(9): 4469-4478.
[12] 景博, 常泽伟, 贾晟哲, 吴送姑, 陈明洋, 高振国, 龚俊波. 熔融结晶的过程强化[J]. 化工学报, 2021, 72(8): 3907-3918.
[13] 姚彦虎, 杨晨, 张兵, 吴永红, 王同华. 基于TiO2溶胶杂化的分子筛炭膜制备及其结构与性能[J]. 化工学报, 2021, 72(8): 4418-4424.
[14] 卢道铭, 唐钊艇, 范怡平, 卢春喜. 大差异颗粒分级再生设备的性能研究[J]. 化工学报, 2021, 72(8): 4184-4195.
[15] 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李璐, 程江, 文秀芳, 皮丕辉, 杨卓如. 用作活性物载体聚苯乙烯-二乙烯苯多孔交联微球的悬浮聚合制备及表征[J]. CIESC Journal, 2006, 14(4): 471 -477 .
[2] 汤艳峰,张淑芬,杨锦宗. 在NaOH-烯丙基氯-DMSO体系中合成烯丙基蔗糖的新方法[J]. CIESC Journal, 2005, 13(6): 835 -836 .
[3] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[4] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[5] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[6] 周彩荣, 石晓华, 王海峰, 高玉国, 蒋登高. 反式-1,2-环基二醇+乙酸丁酯+水三元体系固液相平衡[J]. CIESC Journal, 2007, 15(3): 449 -452 .
[7] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[8] 王紫色, 许淳淳, 曹霞, 徐奔. 仿古铸铁腐蚀产物的形貌、结构的演化历程及其危害性研究[J]. CIESC Journal, 2007, 15(3): 433 -438 .
[9] 刘会娥, 魏飞, 杨艳辉, 金涌. 内构件存在时提升管内流动及颗粒混合行为研究

[J]. CIESC Journal, 2003, 11(4): 371 -376 .
[10] 屈玲, 佟大明, 吕志平, 萧墉壮, 窦涛. 苯乙烯在MCM-41介孔材料中聚合的研究[J]. CIESC Journal, 2003, 11(6): 677 -680 .