化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1825-1832.DOI: 10.11949/0438-1157.20201219
蒋丽群1(),岳元茂1,2,徐禄江3,钱乐1,刘世君1,赵增立1,李海滨1,廖艳芬1,2
收稿日期:
2020-08-26
修回日期:
2020-09-28
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
蒋丽群
作者简介:
蒋丽群(1986—),女,博士,副研究员,基金资助:
JIANG Liqun1(),YUE Yuanmao1,2,XU Lujiang3,QIAN Le1,LIU Shijun1,ZHAO Zengli1,LI Haibin1,LIAO Yanfen1,2
Received:
2020-08-26
Revised:
2020-09-28
Online:
2021-04-05
Published:
2021-04-05
Contact:
JIANG Liqun
摘要:
将木质纤维素快速热解转化为高价值的左旋葡聚糖是国内外研究的热点之一,而左旋葡聚糖产率低是限制其工艺发展的主要因素。论述了纤维素的结构以及木质纤维素的组分对左旋葡聚糖产率的影响,并归纳总结各种预处理及催化热解促进左旋葡聚糖生成的研究现状,最后对未来的研究方向进行了展望。
中图分类号:
蒋丽群,岳元茂,徐禄江,钱乐,刘世君,赵增立,李海滨,廖艳芬. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报, 2021, 72(4): 1825-1832.
JIANG Liqun,YUE Yuanmao,XU Lujiang,QIAN Le,LIU Shijun,ZHAO Zengli,LI Haibin,LIAO Yanfen. Pretreatments promote levoglucosan production from lignocellulose via fast pyrolysis[J]. CIESC Journal, 2021, 72(4): 1825-1832.
预处理方式 | 原料 | 主要结构与组分变化 | 热解反应器 | LG产率变化 | 优势 | 劣势 | 文献 |
---|---|---|---|---|---|---|---|
球磨 | 微晶纤维素 | CrI和DP降低 | CDS | 从14.7%(质量)升至24.1%(质量)① | 无废水等后续处理 | 低性价比 | [ |
酸洗 | 甘蔗渣 | AAEMs、无定形纤维素和半纤维素被脱除,CrI提高 | CDS | 从12.0%(质量)升至43.8%(质量)① | 条件温和,操作简单 | 需要去除残留酸,提高了生产成本 | [ |
碱 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从3.0%升至34.8%② | 条件温和,同时抑制微生物抑制剂的生成,有助于进一步发酵 | 成本较高 | [ |
离子液体 | 甘蔗渣 | AAEMs有效脱除,CrI降低 | CDS | 增幅可达261.9%② | 降低生物油的酸性,离子液体易回收,可重复使用 | 生产成本和能耗高 | [ |
甘油 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从6.9%(质量)升至44.5%(质量)① | 甘油廉价易得 | 反应温度高 | [ |
粗甘油 | 甘蔗渣 | AAEMs和木质素有效脱除,CrI提高 | CDS | 从8.4%(质量)升至25.2%(质量)① | 提高了粗甘油的利用价值,具有经济效益 | 反应温度高 | [ |
水热 | 桉木 | AAEMs和半纤维素含量降低 | 500℃流化床 | 从4.13%(质量)升至18.00%(质量)① | 环保绿色,操作简单 | 反应温度高 | [ |
生物 | 玉米秸秆 | 木质素被有效降解 | CDS | 增加了183.3%② | 条件温和,设备简单,节能环保,副反应和抑制物含量少 | 反应时间长 | [ |
酸浸渍 | 柳枝 | AAEMs被钝化为催化活性更低的盐 | GC450/MS320 | 从2.3%(质量)升至16.8%(质量)① | 降低了酸洗的成本 | 促进木质素向焦油的转化,可能使反应器 结垢 | [ |
酸洗+酸浸渍 | 花旗松 | AAEMs被脱除 | CDS | 提高50%以上② | 残留酸可进一步催化生成脱水糖的反应 | 成本更高,对设备耐腐蚀性要求高 | [ |
表1 不同预处理方式的实验总结
Table 1 Experimental summary of different pretreatment methods
预处理方式 | 原料 | 主要结构与组分变化 | 热解反应器 | LG产率变化 | 优势 | 劣势 | 文献 |
---|---|---|---|---|---|---|---|
球磨 | 微晶纤维素 | CrI和DP降低 | CDS | 从14.7%(质量)升至24.1%(质量)① | 无废水等后续处理 | 低性价比 | [ |
酸洗 | 甘蔗渣 | AAEMs、无定形纤维素和半纤维素被脱除,CrI提高 | CDS | 从12.0%(质量)升至43.8%(质量)① | 条件温和,操作简单 | 需要去除残留酸,提高了生产成本 | [ |
碱 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从3.0%升至34.8%② | 条件温和,同时抑制微生物抑制剂的生成,有助于进一步发酵 | 成本较高 | [ |
离子液体 | 甘蔗渣 | AAEMs有效脱除,CrI降低 | CDS | 增幅可达261.9%② | 降低生物油的酸性,离子液体易回收,可重复使用 | 生产成本和能耗高 | [ |
甘油 | 玉米芯 | AAEMs和木质素被脱除,CrI提高 | CDS | 从6.9%(质量)升至44.5%(质量)① | 甘油廉价易得 | 反应温度高 | [ |
粗甘油 | 甘蔗渣 | AAEMs和木质素有效脱除,CrI提高 | CDS | 从8.4%(质量)升至25.2%(质量)① | 提高了粗甘油的利用价值,具有经济效益 | 反应温度高 | [ |
水热 | 桉木 | AAEMs和半纤维素含量降低 | 500℃流化床 | 从4.13%(质量)升至18.00%(质量)① | 环保绿色,操作简单 | 反应温度高 | [ |
生物 | 玉米秸秆 | 木质素被有效降解 | CDS | 增加了183.3%② | 条件温和,设备简单,节能环保,副反应和抑制物含量少 | 反应时间长 | [ |
酸浸渍 | 柳枝 | AAEMs被钝化为催化活性更低的盐 | GC450/MS320 | 从2.3%(质量)升至16.8%(质量)① | 降低了酸洗的成本 | 促进木质素向焦油的转化,可能使反应器 结垢 | [ |
酸洗+酸浸渍 | 花旗松 | AAEMs被脱除 | CDS | 提高50%以上② | 残留酸可进一步催化生成脱水糖的反应 | 成本更高,对设备耐腐蚀性要求高 | [ |
1 | 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. |
Jiang L Q, Zheng A Q, Wang X B, et al. Progress of biomass fast pyrolysis to produce levoglucosan and aromatics [J]. Advances in New and Renewable Energy, 2018, 6(5): 402-409. | |
2 | 李文惠, 武红丽, 黄婷, 等. 左旋葡聚糖的制备与在生物技术领域的应用[J]. 化学通报, 2017, 80(3): 251-259. |
Li W H, Wu H L, Huang T, et al. Preparation of levoglucosan and its applications in biotechnology[J]. Chemistry, 2017, 80(3): 251-259. | |
3 | Bennett N M, Helle S S, Duff S J B. Extraction and hydrolysis of levoglucosan from pyrolysis oil[J]. Bioresource Technology, 2009, 100(23): 6059-6063. |
4 | Lian J, Garcia-Perez M, Chen S L. Fermentation of levoglucosan with oleaginous yeasts for lipid production[J]. Bioresource Technology, 2013, 133: 183-189. |
5 | Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 24-29. |
6 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
7 | Wang Z H, Mcdonald A G, Westerhof R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 56-66. |
8 | Wang Z H, Pecha B, Westerhof R J M, et al. Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 2940-2955. |
9 | Takashi H, Shigeyoshi S. Levoglucosan formation from crystalline cellulose: importance of a hydrogen bonding network in the reaction[J]. ChemSusChem, 2013, 6(12): 2356-2368. |
10 | Mukarakate C, Mittal A, Ciesielski P N, et al. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4662-4674. |
11 | Julien S, Chornet E, Overend R P. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 1993, 27(1): 25-43. |
12 | Lu Q, Hu B, Zhang Z X, et al. Mechanism of cellulose fast pyrolysis: the role of characteristic chain ends and dehydrated units[J]. Combustion and Flame, 2018, 198: 267-277. |
13 | Jiang L Q, Wu N N, Zheng A Q, et al. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars[J]. Biotechnology for Biofuels, 2016, 9(1): 196. |
14 | Jiang L Q, Wu N N, Zheng A Q, et al. Effect of glycerol pretreatment on levoglucosan production from corncobs by fast pyrolysis[J]. Polymers, 2017, 9(11): 599. |
15 | 孟鑫. 生物质选择性热解制取葡聚糖类化学品的研究[D]. 南京: 东南大学, 2017. |
Meng X. Selective pyrolysis of biomass for chemicals of levoglucosan and levoglucosenone[D]. Nanjing: Southeast University, 2017. | |
16 | Wang S R, Guo X J, Wang K G, et al. Influence of the interaction of components on the pyrolysis behavior of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 183-189. |
17 | Liu Q, Zhong Z P, Wang S R, et al. Interactions of biomass components during pyrolysis: a TG-FTIR study[J]. Journal of Analytical and Applied Pyrolysis. 2011, 90(2): 213-218. |
18 | 金湓, 李宝霞. 纤维素与木质素共热解试验及动力学分析[J]. 化工进展, 2013, 32(2): 303-307. |
Jin P, Li B X. Experiments and kinetic analysis on the co-pyrolysis of cellulose and lignin[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 303-307. | |
19 | Zhang J, Choi Y S, Yoo C G, et al. Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(2): 293-301. |
20 | Kuzhiyil N, Dalluge D, Bai X L, et al. Pyrolytic sugars from cellulosic biomass[J]. ChemSusChem, 2012, 5(11): 2228-2236. |
21 | Fuentes M E, Nowakowski D J, Kubacki M L, et al. Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice[J]. Journal of the Energy Institute, 2008, 81(4): 234-241. |
22 | 王树荣, 廖艳芬, 文丽华, 等.钾盐催化纤维素快速热裂解机理研究[J]. 燃料化学学报, 2004, 32(6): 694-698. |
Wang S R, Liao Y F, Wen L H, et al. Catalysis mechanism of potassium salt during rapid pyrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 694-698. | |
23 | Patwardhan P R, Satrio J A, Brown R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresource Technology, 2010, 101(12): 4646-4655. |
24 | Zhang S P, Dong Q, Chen T, et al. Combination of light bio-oil washing and torrefaction pretreatment of rice husk: its effects on physicochemical characteristics and fast pyrolysis behavior[J]. Energy & Fuels, 2016, 30(4): 3030-3037. |
25 | Mourant D, Wang Z H, He M, et al. Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil[J]. Fuel, 2011, 90(9): 2915-2922. |
26 | Kwon G, Kim D, Kimura S, et al. Rapid-cooling, continuous-feed pyrolyzer for biomass processing: preparation of levoglucosan from cellulose and starch[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 1-5. |
27 | Carpenter D, Westover T L, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green Chemistry, 2014, 16(2): 384-406. |
28 | Jiang L Q, Zheng A Q, Meng J G, et al. A comparative investigation of fast pyrolysis with enzymatic hydrolysis for fermentable sugars production from cellulose[J]. Bioresource Technology, 2019, 274: 281-286. |
29 | Jiang L Q, Wu Y X, Zhao Z L, et al. Selectively biorefining levoglucosan from NaOH pretreated corncobs via fast pyrolysis[J]. Cellulose, 2019, 26(13/14): 7877-7887. |
30 | 吴南南, 蒋丽群, 郑安庆, 等. 离子液体预处理对甘蔗渣快速热解产物的影响[J]. 可再生能源, 2017, 35(4): 495-501. |
Wu N N, Jiang L Q, Zheng A Q, et al. The influence of ionic liquids pretreatment on production by fast pyrolysis from sugarcane bagasse[J]. Renewable Energy Resources, 2017, 35(4): 495-501. | |
31 | Jiang L Q, Wu Y X, Wu N N, et al. Selective saccharification of microwave-assisted glycerol pretreated corncobs via fast pyrolysis and enzymatic hydrolysis[J]. Fuel, 2020, 265: 116965. |
32 | Wu Y X, Jiang L Q, Lin Y, et al. Novel crude glycerol pretreatment for selective saccharification of sugarcane bagasse via fast pyrolysis[J]. Bioresource Technology, 2019, 294: 122094. |
33 | Chang S, Zhao Z L, Zheng A Q, et al. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor[J]. Bioresource Technology, 2013, 138: 321-328. |
34 | Yu Y Q, Zeng Y L, Zuo J, et al. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment[J]. Bioresource Technology, 2013, 134: 198-203. |
35 | Bai X, Brown R C, Fu J, et al. The influence of alkali and alkaline earth metals and the role of acid pretreatments in production of sugars from switchgrass based on solvent liquefaction[J]. Energy & Fuels, 2014, 28(2): 1111-1120. |
36 | Zhou S, Wang Z H, Liaw S, et al. Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 117-130. |
37 | 孙蒙蒙, 徐伟涛, 崔彤彤, 等. 预处理技术在生物质热裂解中的应用[J]. 林产工业, 2019, 46(2): 33-38. |
Sun M M, Xu W T, Cui T T, et al. Application of pretreatment technology in biomass pyrolysis[J]. China Forest Products Industry, 2019, 46(2): 33-38. | |
38 | Mattonai M, Pawcenis D, Del Seppia S, et al. Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose[J]. Bioresource Technology, 2018, 270: 270-277. |
39 | Xu F X, Zhang X, Zhang F, et al. TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures[J]. Fuel, 2020, 268: 117365. |
40 | Al Shra'ah A, Helleur R. Microwave pyrolysis of cellulose at low temperature[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 91-99. |
41 | 孙江纬, 郑安庆, 蒋丽群, 等. 有机酸预处理对桉木解构组分热解特性的影响[J]. 新能源进展, 2017, 5(3): 170-176. |
Sun J W, Zheng A Q, Jiang L Q, et al. Effect of organic acid-based organosolv fractionation of eucalyptus on pyrolysis behavior of its derived fractions[J]. Advances in New and Renewable Energy, 2017, 5(3): 170-176. | |
42 | Jiang L Q, Zheng A Q, Zhao Z L, et al. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose[J]. Bioresource Technology, 2015, 182: 364-367. |
43 | David G F, Justo O R, Perez V H, et al. Thermochemical conversion of sugarcane bagasse by fast pyrolysis: high yield of levoglucosan production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 246-253. |
44 | Hassan E M, Steele P H, Ingram L. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood[J]. Applied Biochemistry and Biotechnology, 2009, 154(1/2/3): 3-13. |
45 | Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover[J]. Bioresource Technology, 2005, 96(18): 2026-2032. |
46 | Jiang L Q, Fang Z, Zhao Z L, et al. 2, 3-Butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa[J]. BioResources, 2015, 10(1): 1318-1329. |
47 | Sheldrake G N, Schleck D. Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars[J]. Green Chemistry, 2007, 9(10): 1044. |
48 | Kudo S, Zhou Z W, Norinaga K, et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chemistry, 2011, 13(11): 3306-3311. |
49 | Auxenfans T, Buchoux S, Larcher D, et al. Enzymatic saccharification and structural properties of industrial wood sawdust: recycled ionic liquids pretreatments[J]. Energy Conversion and Management, 2014, 88: 1094-1103. |
50 | Pang Z Q, Dong C H, Pan X J. Enhanced deconstruction and dissolution of lignocellulosic biomass in ionic liquid at high water content by lithium chloride[J]. Cellulose, 2016, 23(1): 323-338. |
51 | Zheng A Q, Zhao K, Sun J W, et al. Effect of microwave-assisted organosolv fractionation on the chemical structure and decoupling pyrolysis behaviors of waste biomass[J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 120-127. |
52 | Jiang L Q, Zheng A Q, Zhao Z L, et al. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation[J]. Bioresource Technology, 2015, 196: 194-199. |
53 | Zheng A Q, Jiang L Q, Zhao Z L, et al. Effect of hydrothermal treatment on chemical structure and pyrolysis behavior of eucalyptus wood[J]. Energy & Fuels, 2016, 30(4): 3057-3065. |
54 | 唐爱民, 梁文芷. 纤维素预处理技术的发展[J]. 林产化学与工业, 1999, 19(4): 81-88. |
Tang A M, Liang W Z. The development of cellulose pretreatment techniques[J]. Chemistry and Industry of Forest Products, 1999, 19(4): 81-88. | |
55 | Biswas A K, Yang W H, Blasiak W. Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production[J]. Fuel Processing Technology, 2011, 92(9): 1711-1717. |
56 | Kristensen J B, Thygesen L G, Felby C, et al. Cell-wall structural changes in wheat straw pretreated for bioethanol production[J]. Biotechnology for Biofuels, 2008, 1(1): 5. |
57 | Wang Z, Lu Q, Zhu X F, et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem, 2011, 4(1): 79-84. |
58 | 曾叶霖. 预处理对生物质热解特性的影响研究[D]. 武汉: 华中科技大学, 2009. |
Zeng Y L. Study on the influence of pretreatment on biomass pyrolysis characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
59 | Mosier N. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686. |
60 | Zeng Y L, Yang X W, Yu H B, et al. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 9965-9971. |
61 | Wang T P, Ai Y N, Peng L, et al. Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation[J]. Industrial Crops and Products, 2018, 125: 596-601. |
62 | Li Q, Steele P H, Yu F, et al. Pyrolytic spray increases levoglucosan production during fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 33-40. |
63 | 李攀, 王贤华, 龚维婷, 等. 微波加热条件下棉杆热解的产物特性分析[J]. 农业工程学报, 2013, 29(15): 200-206. |
Li P, Wang X H, Gong W T, et al. Property analysis of pyrolysis product from cotton stalk heating by microwave[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 200-206. | |
64 | 李宗强. 秸秆湿式氧化技术实验研究[D]. 济南: 山东大学, 2011. |
Li Z Q. Experimental research on wet oxidation pretreatment of straw[D]. Jinan: Shandong University, 2011. | |
65 | Dalluge D L, Daugaard T, Johnston P, et al. Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass[J]. Green Chemistry, 2014, 16(9): 4144-4155. |
66 | Dobele G, Dizhbite T, Rossinskaja G, et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68/69: 197-211. |
67 | Fan Y Y, Zhang D Y, Zheng A Q, et al. Selective production of anhydrosugars and furfural from fast pyrolysis of corncobs using sulfuric acid as an inhibitor and catalyst[J]. Chemical Engineering Journal, 2019, 358: 743-751. |
68 | Zhang H Y, Meng X, Liu C, et al. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Processing Technology, 2017, 167: 484-490. |
69 | Shaik S M, Sharratt P N, Tan R B H. Influence of selected mineral acids and alkalis on cellulose pyrolysis pathways and anhydrosaccharide formation[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 234-242. |
70 | Long Y, Yu Y, Chua Y W, et al. Acid-catalysed cellulose pyrolysis at low temperatures[J]. Fuel, 2017, 193: 460-466. |
71 | Pecha B, Arauzo P, Garcia-Perez M. Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114: 127-137. |
72 | David G F, Perez V H, Rodriguez Justo O, et al. Effect of acid additives on sugarcane bagasse pyrolysis: production of high yields of sugars[J]. Bioresource Technology, 2017, 223: 74-83. |
73 | Meng X, Zhang H Y, Liu C, et al. Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py-GC/MS[J]. Energy & Fuels, 2016, 30(10): 8369-8376. |
74 | Cao F Z, Xia S P, Yang X W, et al. Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals[J]. Chemical Engineering Journal, 2020, 385: 123809. |
75 | Azeez A M, Meier D, Odermatt J, et al. Effects of zeolites on volatile products of beech wood using analytical pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(2): 296-302. |
76 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅰ): Py-GC/MS实验[J]. 化工学报, 2010, 61(4): 1018-1024. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose(Ⅰ): Py-GC/MS experiments[J]. CIESC Journal, 2010, 61(4): 1018-1024. |
[1] | 王倩, 李神勇, 康帅, 庞薇, 郝龙龙, 秦身钧. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032. |
[2] | 童海航, 石德智, 刘嘉宇, 蔡桦伊, 罗丹, 陈飞. 金属纳米颗粒辅助木质纤维素暗发酵生物制氢的研究进展[J]. 化工学报, 2022, 73(4): 1417-1435. |
[3] | 徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172. |
[4] | 张溪,张立龙,李瑞,吴玉龙. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800. |
[5] | 颜蓓蓓, 王建, 刘彬, 陈冠益, 程占军. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
[6] | 魏砾宏, 樊雨, 房凡, 郭良振, 陈勇, 杨天华. Na及矿物类型对高碱煤快速热解焦油及BTEXN产物分配的影响[J]. 化工学报, 2021, 72(3): 1702-1711. |
[7] | 云慧敏, 代建军, 李辉, 毕晓涛. 生物质耦合燃煤发电经济环境效益评估[J]. 化工学报, 2021, 72(12): 6311-6327. |
[8] | 赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258. |
[9] | 徐坤, 方阳, 宫梦, 陈应泉, 陈旭, 王贤华, 杨海平, 陈汉平. 葡萄糖催化热解制备左旋葡萄糖酮特性研究[J]. 化工学报, 2020, 71(8): 3594-3601. |
[10] | 张晗,付乾,廖强,夏奡,黄云,朱贤青,朱恂. 小麦秸秆水热预处理半纤维素降解动力学研究[J]. 化工学报, 2020, 71(7): 3098-3105. |
[11] | 陈蓓秋, 林春香, 刘以凡, 吕源财, 刘明华. 离子液体在纳米纤维素制备中的应用进展[J]. 化工学报, 2020, 71(3): 903-913. |
[12] | 钱乐,蒋丽群,岳元茂,赵增立. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报, 2020, 71(12): 5376-5387. |
[13] | 孙来芝, 陈雷, 赵保峰, 杨双霞, 谢新苹, 孟凡军, 司洪宇. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
[14] | 宋迪慧, 安路阳, 张立涛, 张亚峰, 徐歆未, 王宇楠, 卫皇曌. 响应曲面法优化电化学耦合体系预处理焦化废水[J]. 化工学报, 2018, 69(9): 4001-4011. |
[15] | 高静, 郑才菊, 谈婷如, 张迪, 刘书成, 吉宏武. 超高压环境下离子液体微乳液预处理对水稻秸秆的影响[J]. 化工学报, 2018, 69(8): 3686-3692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||