化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5376-5387.DOI: 10.11949/0438-1157.20200596
收稿日期:
2020-05-18
修回日期:
2020-06-10
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
蒋丽群
作者简介:
钱乐(1996—),男,硕士研究生,基金资助:
QIAN Le1,2(),JIANG Liqun1(),YUE Yuanmao1,ZHAO Zengli1
Received:
2020-05-18
Revised:
2020-06-10
Online:
2020-12-05
Published:
2020-12-05
Contact:
JIANG Liqun
摘要:
左旋葡聚糖酮(LGO)在有机合成领域有巨大的应用价值,快速热解生物质制取左旋葡聚糖酮是生物质能开发与利用的研究热点。目前LGO的应用主要受到其产量的限制:一是没有较好的化学合成方法,二是常规热解生物质得到的产物中左旋葡聚糖酮的含量极低,使得LGO难以大量生产。催化热解可以显著提高左旋葡聚糖酮的产率,目前用于催化热解生物质制取左旋葡聚糖酮的各类催化剂,包括液体酸、固体酸、金属氯化物、离子液体等均取得了一定的成果,但效果差异明显,因此分析了不同催化剂间的优势与劣势,并对以后的工作进行了展望。
中图分类号:
钱乐,蒋丽群,岳元茂,赵增立. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报, 2020, 71(12): 5376-5387.
QIAN Le,JIANG Liqun,YUE Yuanmao,ZHAO Zengli. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone[J]. CIESC Journal, 2020, 71(12): 5376-5387.
反应底物 | 催化剂 | 反应器 | 热解条件 | 产率/%(质量) | 相对含量/% | 文献 |
---|---|---|---|---|---|---|
纤维素 | 磷酸 | CDS Pyroprobe | 500℃ | 34 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 500℃ | 17 | [ | |
玉米芯 | 硫酸 | CDS Pyroprobe | 300℃ | 4.9 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 350℃ | 22.3 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 350℃ | 21.08 | [ | |
纤维素 | Fe3+ | CDS Pyroprobe | 500℃ | 40.7 | [ | |
纤维素 | 磷酸 | 烤箱 | 620 W | 7.65 | [ | |
纤维素 | 磷酸 | 烧瓶与加热套 | 225℃ | 12 | [ | |
木质纤维素 | 磷酸 | CDS Pyroprobe | 375℃ | 29~30 | [ | |
稻壳 | NH4H2PO4 | CDS Pyroprobe | 390℃ | 34.65 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 873 K | 51.0 | [ | |
纤维素 | 磷酸铵 | CDS Pyroprobe | 873 K | 30.9 | [ | |
玉米芯 | 硫酸 | 固定床反应器 | 800 K | 4.5 | [ | |
甘蔗渣 | 硫酸 | 固定床反应器 | 270℃ | 7.58 | [ | |
纤维素 | 蒙脱石K10 | 卧式烤箱 | 350℃ | 2.9 | [ | |
纤维素 | 黏土催化剂 | 微波热解器 | 180℃ | 12.3 | [ | |
杨木 | 固体磷酸 | CDS Pyroprobe | 300℃ | 8.2 | [ | |
纤维素 | 固体磷酸 | 固定床反应器 | 325℃ | 85 | [ | |
纤维素 | 磷酸活性炭 | CDS Pyroprobe | 300℃ | 18.1 | [ | |
纤维素 | 磷酸活性炭 | 固定床反应器 | 300℃ | 14.7 | [ | |
纤维素 | 磷酸铁 | 固定床反应器 | 350℃ | 32.7 | [ | |
纤维素 | 小型热解炉 | 335℃ | 8.14 | [ | ||
纤维素 | CDS Pyroprobe | 400℃ | 60 | [ | ||
纤维素 | CDS Pyroprobe | 300℃ | 15.4 | [ | ||
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 350℃ | 22.0 | [ | |
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 300℃ | 18.1~29.7 | [ | |
纤维素 | [BMMIM]CF3SO3 | 固定床与重整器 | 380℃ | 31.6 | [ | |
纤维素 | [BMMIM]OTf | 固定床与重整器 | 500℃ | 16.6 | [ |
表1 不同催化剂催化生物质热解制取LGO
Table 1 Different catalysts for catalytic pyrolysis of biomass to obtain LGO
反应底物 | 催化剂 | 反应器 | 热解条件 | 产率/%(质量) | 相对含量/% | 文献 |
---|---|---|---|---|---|---|
纤维素 | 磷酸 | CDS Pyroprobe | 500℃ | 34 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 500℃ | 17 | [ | |
玉米芯 | 硫酸 | CDS Pyroprobe | 300℃ | 4.9 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 350℃ | 22.3 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 350℃ | 21.08 | [ | |
纤维素 | Fe3+ | CDS Pyroprobe | 500℃ | 40.7 | [ | |
纤维素 | 磷酸 | 烤箱 | 620 W | 7.65 | [ | |
纤维素 | 磷酸 | 烧瓶与加热套 | 225℃ | 12 | [ | |
木质纤维素 | 磷酸 | CDS Pyroprobe | 375℃ | 29~30 | [ | |
稻壳 | NH4H2PO4 | CDS Pyroprobe | 390℃ | 34.65 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 873 K | 51.0 | [ | |
纤维素 | 磷酸铵 | CDS Pyroprobe | 873 K | 30.9 | [ | |
玉米芯 | 硫酸 | 固定床反应器 | 800 K | 4.5 | [ | |
甘蔗渣 | 硫酸 | 固定床反应器 | 270℃ | 7.58 | [ | |
纤维素 | 蒙脱石K10 | 卧式烤箱 | 350℃ | 2.9 | [ | |
纤维素 | 黏土催化剂 | 微波热解器 | 180℃ | 12.3 | [ | |
杨木 | 固体磷酸 | CDS Pyroprobe | 300℃ | 8.2 | [ | |
纤维素 | 固体磷酸 | 固定床反应器 | 325℃ | 85 | [ | |
纤维素 | 磷酸活性炭 | CDS Pyroprobe | 300℃ | 18.1 | [ | |
纤维素 | 磷酸活性炭 | 固定床反应器 | 300℃ | 14.7 | [ | |
纤维素 | 磷酸铁 | 固定床反应器 | 350℃ | 32.7 | [ | |
纤维素 | 小型热解炉 | 335℃ | 8.14 | [ | ||
纤维素 | CDS Pyroprobe | 400℃ | 60 | [ | ||
纤维素 | CDS Pyroprobe | 300℃ | 15.4 | [ | ||
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 350℃ | 22.0 | [ | |
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 300℃ | 18.1~29.7 | [ | |
纤维素 | [BMMIM]CF3SO3 | 固定床与重整器 | 380℃ | 31.6 | [ | |
纤维素 | [BMMIM]OTf | 固定床与重整器 | 500℃ | 16.6 | [ |
1 | Mazario J, Romero M P, Concepcion P, et al. Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone[J]. Green Chemistry, 2019, 21(17): 4769-4785. |
2 | Nel W P, Cooper C J. Implications of fossil fuel constraints on economic growth and global warming[J]. Energy Policy, 2009, 37(1): 166-180. |
3 | Shafiee S, Topal E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189. |
4 | Balat M, Ayar G. Biomass energy in the world, use of biomass and potential trends[J]. Energy Sources, 2005, 27(10): 931-940. |
5 | Long H L, Li X B, Wang H, et al. Biomass resources and their bioenergy potential estimation: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 26: 344-352. |
6 | Zhou C H, Xia X, Lin C X, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews, 2011, 40(11): 5588-5617. |
7 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
8 | Sheldon R A. Green and sustainable manufacture of chemicals from biomass: state of the art[J]. Green Chemistry, 2014, 16(3): 950-963. |
9 | Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass & Bioenergy, 2012, 38: 68-94. |
10 | Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
11 | Black B A, Michener W E, Ramirez K J, et al. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6815-6827. |
12 | Perkins G, Bhaskar T, Konarova M. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 292-315. |
13 | Taarning E, Osmundsen C M, Yang X B, et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy & Environmental Science, 2011, 4(3): 793-804. |
14 | Carpenter D, Westover T L, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green Chemistry, 2014, 16(2): 384-406. |
15 | Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: Kinetic mechanism of biomass pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 2867-2881. |
16 | Halpern Y, Riffer R, Broido A. Levoglucosenone (1, 6-anhydro-3, 4-dideoxy-β-D-pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates[J]. The Journal of Organic Chemistry, 1973, 38(2): 204-209. |
17 | Miftakhov M S, Valeev F A, Gaisina I N, et al. Levoglucosenone-chemical-properties and using in fine organic-synthsis[J]. Uspekhi Khimii, 1994, 63(10): 922-936. |
18 | Ostermeier M, Schobert R. Total synthesis of (+)-chloriolide[J]. Journal of Organic Chemistry, 2014, 79(9): 4038-4042. |
19 | Muller C, Frau M A G Z, Ballinari D, et al. Design, synthesis, and biological evaluation of levoglucosenone-derived Ras activation inhibitors[J]. ChemMedChem, 2009, 4(4): 24-528. |
20 | Sherwood J, De bruyn M, Constantinou A, et al. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents[J]. Chemical Communications, 2014, 50(68): 9650-9652. |
21 | Witczak Z J, Mielguj R. A convenient synthesis of the (+) enantiomer of levoglucosenone and its 5-hydroxymethyl analog[J]. Synlett, 1996, 1: 108-110. |
22 | Allgeier A M, Desilva N, Korovessi E, et al. Preparing 1, 6-hexanediol involves contacting levoglucosenone with hydrogen in the presence of a hydrogenation catalyst comprising palladium, platinum/tungsten, nickel/tungsten, rhodium/rhenium, or mixtures:WO2013101980 A1[P]. 2013. |
23 | Allgeier A M, Desilva N, Korovessi E, et al. Preparing 1, 6-hexanediol comprises contacting levoglucosenone with hydrogen in presence of first hydrogenation catalyst to form product mixture and heating product mixture in the presence of hydrogen and second hydrogenation catalyst: US2013101969 A1[P]. 2013. |
24 | 鲁华, 高伟. 1, 6-己二醇的产业现状及应用[J]. 精细与专用化学品, 2013, 21(7): 9-11. |
Lu H, Gao W. Industry status and application of 1, 6-hexanediol[J]. Fine and Specialty Chemicals, 2013, 21(7): 9-11. | |
25 | 吕国辉. 1, 6-己二醇国内产业情况及其应用[J]. 河南化工, 2018, 35(8): 12-14. |
Lyu G H. Domestic industrial situation and its application of 1, 6-hexanediol[J]. Henan Chemical Industry, 2018, 35(8): 12-14. | |
26 | Mori M, Chuman T, Kato K, et al. A stereoselective synthesis “natural” (4S, 6S, 7S)-serricornin, the sex pheromone of cigarette bettle, from levoglucosenone[J]. Tetrahedron Letters, 1982, 23(44): 4593-4596. |
27 | Urabe D, Nishikawa T, Isobe M. An efficient total synthesis of optically active tetrodotoxin from levoglucosenone[J]. Chemistry–An Asian Journal, 2006, 1(1/2): 125-135. |
28 | Zhang Z B, Lu Q, Ye X N, et al. Selective production of levoglucosenone from catalytic fast pyrolysis of biomass mechanically mixed with solid phosphoric acid catalysts[J]. BioEnergy Research, 2015, 8(3): 1263-1274. |
29 | Kudo S, Zhou Z W, Yamasaki K, et al. Sulfonate ionic liquid as a stable and active catalyst for levoglucosenone production from saccharides via catalytic pyrolysis[J]. Catalysts, 2013, 3(4): 757-773. |
30 | Ohnishi A, Kato K, Takagi E. Curie-point pyrolysis of cellulose[J]. Polymer Journal, 1975, 7(4): 431-437. |
31 | Dobele G, Dizhbite T, Rossinskaja G, et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1, 6-anhydrosaccharides in high yields[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68/69: 197-211. |
32 | Cao F Z, Xia S P, Yang X W, et al. Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals[J]. Chemical Engineering Journal, 2020, 385: 123809. |
33 | Shafizadeh F, Chin P P S. Pyrolytic production and decomposition of 1,6-anhydro-3,4-dideoxy-beta-D-glycero-hex-3-enopyranos-2-ulose[J]. Carbohydrate Research, 1976, 46(1): 149-154. |
34 | Mettler M S, Mushrif S H, Paulsen A D, et al. Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates[J]. Energy & Environmental Science, 2012, 5(1): 5414-5424. |
35 | Dobele G, Rossinskaja G, Telysheva G, et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49(1/2): 307-317. |
36 | Dobele G, Zhurinsh A, Volperts A, et al. Study of levoglucosenone obtained in analytical pyrolysis and screw-type reactor, separation and distillation[J]. Wood Science and Technology, 2020, 54(2): 383-400. |
37 | Dobele G, Rossinskaja G, Dizhbite T, et al. Application of catalysts for obtaining 1, 6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 401-405. |
38 | Sarotti A M, Spanevello R A, Suarez A G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach[J]. Green Chemistry, 2007, 9(10): 1137-1140. |
39 | Marshall J A. An Improved Preparation of Levoglucosenone from Cellulose[M]. Proquest, UK: UMI Dissertation Publishing, 2008: 145-149. |
40 | Zandersons J, Zhurinsh A, Dobele G, et al. Feasibility of broadening the feedstock choice for levoglucosenone production by acid pre-treatment of wood and catalytic pyrolysis of the obtained lignocellulose[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 222-226. |
41 | Li K, Zhang Z X, Ma S W, et al. Effects of NH4H2PO4-loading and temperature on the two-stage pyrolysis of biomass: analytical pyrolysis-gas chromatography/mass spectrometry study[J]. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 76-82. |
42 | Nowakowski D J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(2): 197-204. |
43 | Branca C, Galgano A, Blasi C, et al. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy & Fuels, 2011, 25(1): 359-369. |
44 | Sui X W, Wang Z, Liao B, et al. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature[J]. Bioresource Technology, 2012, 103(1): 466-469. |
45 | Rutkowski P. Pyrolytic behavior of cellulose in presence of montmorillonite K10 as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 115-122. |
46 | Doroshenko A, Pylypenko I, Heaton K, et al. Selective microwave-assisted pyrolysis of cellulose towards levoglucosenone with clay catalysts[J]. ChemSusChem, 2019, 12(24): 5224-5227. |
47 | Santander J A, Alvarez M, Gutierrez V, et al. Solid phosphoric acid catalysts based on mesoporous silica for levoglucosenone production via cellulose fast pyrolysis[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 484-493. |
48 | Ye X N, Lu Q, Wang X, et al. Catalytic fast pyrolysis of cellulose and biomass to selectively produce levoglucosenone using activated carbon catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10815-10825. |
49 | 夏海岸, 黄彩燕, 肖媛媛, 等. 磷酸铁催化热解纤维素制备左旋葡萄糖酮[J]. 广东化工, 2013, 40(18): 15-16+11. |
Xia H A, Huang C Y, Xiao Y Y, et al. Catalytic pyrolysis of cellulose into levoglucosenone using FePO4 as catalyst[J]. Guangdong Chemical Industry, 2013, 40(18): 15-16+11. | |
50 | Wang Z, Lu Q, Zhu X F, et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem, 2011, 4(1): 79-84. |
51 | Lu Q, Zhang X M, Zhang Z B, et al. Catalytic fast pyrolysis of cellulose mixed with sulfated titania to produce levoglucosenoe: analytical Py-GC/MS study[J]. Bioresources, 2012, 7(3): 2820-2834. |
52 | Lu Q, Ye X N, Zhang Z B, et al. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J]. Bioresource Technology, 2014, 171: 10-15. |
53 | Kudo S, Zhou Z, Norinaga K, et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chemistry, 2011, 13(11): 3306-3311. |
54 | Kudo S, Goto N, Sperry J, et al. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 1132-1140. |
55 | Huang X, Kudo S, Hayashi J. Two-step conversion of cellulose to levoglucosenone using updraft fixed bed pyrolyzer and catalytic reformer[J]. Fuel Processing Technology, 2019, 191: 29-35. |
56 | Ohtani H, Komura T, Sonoda N, et al. Evaluation of acidic paper deterioration in library materials by pyrolysis-gas chromatography[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 460-464. |
57 | Long Y, Yu Y, Chua Y W, et al. Acid-catalysed cellulose pyrolysis at low temperatures[J]. Fuel, 2017, 193: 460-466. |
58 | Hu B, Lu Q, Wu Y T, et al. Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose[J]. Journal of Energy Chemistry, 2020, 43: 78-89. |
59 | Meng X, Zhang H Y, Liu C, et al. Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py-GC/MS[J]. Energy & Fuels, 2016, 30(10): 8369-8376. |
60 | Rizhikovs J, Brazdausks P, Dobele G, et al. Pretreated hemp shives: possibilities of conversion into levoglucosan and levoglucosenone[J]. Industrial Crops and Products, 2019, 139:111520. |
61 | Zhang H, Meng X, Liu C, et al. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Processing Technology, 2017, 167: 484-490. |
62 | 黄鹏, 张文超, 姚靖靖, 等. 生物质催化裂解选择性制备化学品的研究进展[J]. 现代化工, 2017, 37(6): 53-57+59. |
Huang P, Zhang W C, Yao J J, et al. Research progress on selective preparation of chemicals by catalytic pyrolysis of biomass[J]. Modern Chemical Industry, 2017, 37(6): 53-57+59. | |
63 | Torri C, Lesci I G, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 192-196. |
64 | Casoni A I, Nievas M L, Moyano E L, et al. Catalytic pyrolysis of cellulose using MCM-41 type catalysts[J]. Applied Catalysis A: General, 2016, 514: 235-240. |
65 | Fabbri D, Torri C, Mancini I. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chemistry, 2007, 9(12): 1374-1379. |
66 | Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study[J]. Journal of Analytical and Applied Pyrolysis, 2006, 80(1): 24-29. |
67 | Wei X, Wang Z, Wu Y, et al. Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 150-154. |
68 | Feng L, Chen Z L. Research progress on dissolution and functional modification of cellulose in ionic liquids[J]. Journal of Molecular Liquids, 2008, 142(1/2/3): 1-5. |
69 | 张锁江, 刘晓敏, 姚晓倩, 等. 离子液体的前沿、进展及应用[J]. 中国科学(B辑:化学), 2009, 39(10): 1134-1144. |
Zhang S J, Liu X M, Yao X Q, et al. Frontier, progress and application of ionic liquids[J]. Science in China (Series B:Chemistry), 2009, 39(10): 1134-1144. | |
70 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅰ): Py-GC/MS实验[J]. 化工学报, 2010, 61(4): 1018-1024. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose(Ⅰ): Py-GC/MS experiments[J]. CIESC Journal, 2010, 61(4): 1018-1024. | |
71 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅱ): 机理分析[J]. 化工学报, 2010, 61(4):1025-1032. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose(Ⅱ): Mechanism analysis[J]. CIESC Journal, 2010, 61(4): 1025-1032. | |
72 | Rutkowski P. Catalytic effects of copper(Ⅱ) chloride and aluminum chloride on the pyrolytic behavior of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 86-97. |
73 | Diblasi C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science, 2008, 34(1): 47-90. |
74 | Lu Q, Dong C Q, Zhang X M, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2): 204-212. |
75 | Rutkowski P. Chemical composition of bio-oil produced by co-pyrolysis of biopolymer/polypropylene mixtures with K2CO3 and ZnCl2 addition[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 38-47. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[13] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||