化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3680-3685.doi: 10.11949/0438-1157.20201838

• 催化、动力学与反应器 • 上一篇    下一篇

超临界二氧化碳介入的α-松油醇催化合成1,8-桉叶素

洪燕珍(),王笛,李卓昱,徐亚南,王宏涛,苏玉忠,彭丽,李军()   

  1. 厦门大学化学化工学院,福建 厦门 361005
  • 收稿日期:2020-12-16 修回日期:2021-01-21 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 李军 E-mail:aruik@xmu.edu.cn;junnyxm@xmu.edu.cn
  • 作者简介:洪燕珍(1981—),女,硕士研究生,工程师,aruik@xmu.edu.cn
  • 基金资助:
    厦门大学校长基金项目(20720180027)

Catalytic isomerization of α-terpineol to 1,8-cineole in supercritical carbon dioxide

HONG Yanzhen(),WANG Di,LI Zhuoyu,XU Yanan,WANG Hongtao,SU Yuzhong,PENG Li,LI Jun()   

  1. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2020-12-16 Revised:2021-01-21 Published:2021-07-05 Online:2021-07-05
  • Contact: LI Jun E-mail:aruik@xmu.edu.cn;junnyxm@xmu.edu.cn

摘要:

提出超临界二氧化碳介入α-松油醇异构合成1,8-桉叶素的方法,并采用二极管阵列检测器测量超临界二氧化碳下α-松油醇/环己烷体系的最大吸收波长研究二氧化碳加入量与极性的关系。考察了溶剂体系极性、溶剂量和二氧化碳压力对磷钨酸/聚离子液体(PW/PIL)催化剂催化α-松油醇异构合成1,8-桉叶素的影响,并探讨了超临界二氧化碳介质中,PW/PIL催化剂催化α-松油醇异构合成1,8-桉叶素可能的反应机理。开发了一种绿色高效的1,8-桉叶素合成工艺,当环己烷/α-松油醇的质量比10∶1,PW/PIL催化剂/α-松油醇的摩尔比0.0163∶1,CO2压力19.0 MPa,50℃反应8 h时,α-松油醇的转化率为89.3%,1,8-桉叶素的选择性为54.6%。研究表明,超临界二氧化碳起到共溶剂、膨胀溶剂、降低溶剂体系极性的三重作用,从而改善了催化剂的团聚现象,提高了1,8-桉叶素的选择性。

关键词: α-松油醇, 1,8-桉叶素, 超临界二氧化碳, 二极管阵列检测器, 极性

Abstract:

This work proposes a method for supercritical carbon dioxide to intervene α-terpineol to synthesize 1,8-cineole. In addition, the diode-array detector was employed to measure the maximum absorption wavelength of the α-terpineol/cyclohexane mixture in supercritical carbon dioxide for analysis of the relationship between the amount of carbon dioxide and the polarity of the system. The catalytic isomerization was studied by considering the effects of polarity, solvent amount, and carbon dioxide pressure. The plausible mechanism for isomerization of α-terpineol to 1,8-cineole by phosphotungstic acid/poly(ionic liquid) (PW/PIL) in supercritical carbon dioxide was proposed. This work offers a novel green and efficient supercritical technique for the synthesis of 1,8-cineole. In supercritical carbon dioxide, 89.3% conversion of α-terpineol and 54.6% selectivity to 1,8-cineole were obtained with the mass ratio of cyclohexane to α-terpineol 10∶1 and the molar ratio of PW/PIL catalyst to α-terpineol 0.0163∶1, at 19.0 MPa, 50℃ for 8 h. The results showed that supercritical carbon dioxide as co-solvent expanded the applied solvent as well as reducing the polarity of the system; therefore, the catalyst aggregation was alleviated obviously, and as a result the selectivity of 1,8-cineole was increased.

Key words: α-terpineol, 1,8-cineole, supercritical carbon dioxide, diode-array detector, polarity

中图分类号: 

  • TQ 032.4

图1

超临界CO2反应装置图1—背压阀;2—压缩机;3—高压釜;4—CO2气瓶;5—水浴锅;6—磁子;7—缓冲釜;V-1~V-3—截止阀;T—控温系统;P—压力表"

图2

环己烷用量对催化活性和极性的影响"

表1

α-松油醇/环己烷体系的最大吸收波长"

压力/MPaVCO2V环己烷最大吸收波长 /nm仪器
99∶1211SFC Pre30
98∶2215SFC Pre30
97∶3222SFC Pre30
0.1224常压UV-780

图3

超临界CO2下α-松油醇/环己烷体系的最大吸收波长"

图4

超临界CO2/α-松油醇/环己烷体系的溶胀曲线"

图5

超临界CO2中溶剂用量对催化活性的影响"

图6

超临界CO2中压力对催化活性的影响"

1 尹晓燕, 王燕燕. 1, 8-桉叶素药理作用及其机制研究进展[J]. 生命的化学, 2020, 40(11): 2026-2034.
Yin X Y, Wang Y Y. Research progress on pharmacological activities and mechanism of 1, 8-cineole[J]. Chemistry of Life, 2020, 40(11): 2026-2034.
2 Greiner J F W, Müller J, Zeuner M T, et al. 1, 8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity[J]. Biochimica et Biophysica Acta, 2013, 1833(12): 2866-2878.
3 Santos F A, Rao V S N. Antiinflammatory and antinociceptive effects of 1, 8-cineole a terpenoid oxide present in many plant essential oils[J]. Phytotherapy Research, 2000, 14(4): 240-244.
4 Southwell I. Eucalyptus leaf oils: use, chemistry, distillation and marketing[J]. Journal of Chromatography A, 1992, 598(2): 316.
5 田玉红, 张祥民, 黄泰松, 等. 桉叶油的研究进展[J]. 食品与发酵工业, 2007, 33(10): 139-143.
Tian Y H, Zhang X M, Huang T S, et al. Research advances on the essential oils from leaves of eucalyptus[J]. Food and Fermentation Industries, 2007, 33(10): 139-143.
6 李士雨, 王静康. 桉叶素应用与制备综述[J]. 精细化工, 1995, 12(5): 12-15.
Li S Y, Wang J K. A review about the application and refinement of 1,8-cineole[J]. Fine Chemicals, 1995, 12(5): 12-15.
7 Wu H W, Hendrawinata W, Yu Y, et al. Effect of hydrodistillation on 1, 8-cineole extraction from mallee leaf and the fuel properties of spent biomass[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11280-11287.
8 田玉红. 广西桉叶挥发性成分分析及抗菌抗氧化性能研究[D]. 南宁: 广西大学, 2006.
Tian Y H. Chemical composition, antimicrobial and antioxidative properties of volatile components from leaves of eucalyptus growing in Guangxi[D]. Nanning: Guangxi University, 2006.
9 田玉红, 刘雄民, 周永红, 等. 圆角桉叶精油的化学成分[J]. 食品科学, 2007, 28(1): 36-38.
Tian Y H, Liu X M, Zhou Y H, et al. Chemical compositions of essential oil of eucalyptus umbellate growing in Guangxi[J]. Food Science, 2007, 28(1): 36-38.
10 王健英. 1,8-桉叶油素的提取与提纯[D]. 天津: 天津大学, 2004.
Wang J Y. The extraction and purify of 1, 8-cineole[D]. Tianjin: Tianjin University, 2004.
11 应安国, 许松林, 徐世民. 间歇真空精馏提纯桉叶油的研究[J]. 林产工业, 2005, 32(2): 29-31.
31 Nishimura T, Okuhara T, Misono M. High catalytic activities of pseudoliquid phase of dodecatungstophosphoric acid for reactions of polar molecules[J]. Chemistry Letters, 1991, 20(10): 1695-1698.
32 Lee K Y, Arai T, Nakata S, et al. Catalysis by heteropoly compounds(20): an NMR study of ethanol dehydration in the pseudoliquid phase of 12-tungstophosphoric acid[J]. Journal of the American Chemical Society, 1992, 114(8): 2836-2842.
11 Ying A G, Xu S L, Xu S M. Purification of 1, 8-cineol by vacuum batch distillation[J]. China Forest Products Industry, 2005, 32(2): 29-31.
12 李士雨. 桉叶素的纯化[J]. 精细化工, 2006, 23(1): 35-37.
Li S Y. Purification process of 1,8-cineole[J]. Fine Chemicals, 2006, 23(1): 35-37.
13 胡翔飞, 叶志恒. 松油醇合成1,8-桉叶素的方法: 108558902A[P]. 2018-09-21.
Hu X F, Ye Z H. Method for synthesizing 1,8-cineole from terpilenol: 108558902A[P]. 2018-09-21.
14 Mitchell P. Method of preparing cineoles: EP0300117 (B1) [P]. 1989-01-25.
15 Fariña L, Boido E, Carrau F, et al. Terpene compounds as possible precursors of 1, 8-cineole in red grapes and wines[J]. Journal of Agricultural and Food Chemistry, 2005, 53(5): 1633-1636.
16 崔军涛, 汪锦航, 黄金龙, 等. α-松油醇合成1,8-桉叶素的方法: 106366090A[P]. 2017-02-01.
Cui J T, Wang J H, Huang J L, et al. Method of synthesizing1, 8-cineole from α-terpilenol: 106366090A[P]. 2017-02-01.
17 Leão Lana E J, da Silva Rocha K A, Kozhevnikov I V, et al. Synthesis of 1, 8-cineole and 1, 4-cineole by isomerization of α-terpineol catalyzed by heteropoly acid[J]. Journal of Molecular Catalysis A: Chemical, 2006, 259(1/2): 99-102.
18 Goussevskaia E V, Rocha K A D S, Lana E J L. Process for the preparation of 1,​4- and 1,​8-​cineols via polyhetero acid catalyzed isomerization of α-​terpineol: BRPI0605089A[P]. 2008-05-20.
19 张东丽. 负载型磷钨酸催化合成1,8-桉叶素的研究[D]. 厦门: 厦门大学, 2014.
Zhang D L. Study of 1,8-cineole synthesis by supported phosphotungstic acids catalyst[D]. Xiamen: Xiamen University, 2014.
20 王宏涛, 张东丽, 郑哲楠, 等. 一种合成1,8-桉叶素的固体杂多酸催化剂的制备方法: 103785468A[P]. 2014-05-14.
Wang H T, Zhang D L, Zheng Z N, et al. Preparation method for solid heteropolyacid catalyst for synthesizing 1,8-cineole: 103785468A[P]. 2014-05-14.
21 Wu S S, Wang J, Zhang W H, et al. Preparation of keggin and preyssler heteropolyacid catalysts on amine-modified SBA-15 and their catalytic performances in esterification of n-butanol with acetic acid[J]. Catalysis Letters, 2008, 125(3/4): 308-314.
22 Wu S S, Liu P, Leng Y, et al. Heteropolyacids anchored on amino-functionalized MCM-41 via condensation as reusable catalysts for esterification[J]. Catalysis Letters, 2009, 132(3/4): 500-505.
23 Wu R J, Song L, Ma G F, et al. Phosphotungstic acid immobilized on imidazole poly(ionic liquid) for isomerization of α-terpineol to 1, 8-cineole[J]. Catalysis Letters, 2017, 147(11): 2736-2744.
24 吴榕君. 咪唑类聚离子液体固载磷钨酸及其催化α-松油醇异构合成1, 8-桉叶素的研究[D]. 厦门: 厦门大学, 2017.
Wu R J. Study of phosphotungstic acid immobilized on imidazolium-based poly (ionic liquid)and its application for isomerization of α-terpineol to 1, 8-cineole[D]. Xiamen: Xiamen University, 2017.
25 王宏涛, 吴榕君, 李军, 等. 一种负载型杂多酸催化剂及其制备方法与应用: 106732779B[P]. 2019-07-09.
Wang H T, Wu R J, Li J, et al. Supported heteropolyacid catalyst, and preparation method and application thereof: 106732779B[P]. 2019-07-09.
26 王宏涛, 王笛, 李军, 等. 一种α-松油醇合成1,8-桉叶素的方法: 109810118B[P]. 2020-09-22.
Wang H T, Wang D, Li J, et al. Method for synthetizing1,8-eudesmin from α-terpilenol: 109810118B[P]. 2020-09-22.
27 Kelley S P, Lemert R M. Solvatochromic characterization of the liquid phase in liquid-supercritical CO2 mixtures[J]. AIChE Journal, 1996, 42(7): 2047-2056.
28 Hua D, Hong J D, Hu X H, et al. Solid-liquid-gas equilibrium of the naphthalene-biphenyl-CO2 system: measurement and modeling[J]. Fluid Phase Equilibria, 2010, 299(1): 109-115.
29 花丹, 洪燕珍, 苏玉忠, 等. 高压等温结晶研究装置的建立及初步应用[J]. 化工进展, 2011, 30(S1): 59-61.
Hua D, Hong Y Z, Su Y Z, et al. An apparatus for high-pressure isothermal crystallization study and its tentative application[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 59-61.
30 王恩波, 赵世良, 郑汝骊. 杂多酸型催化剂[J]. 石油化工, 1985, 14(10): 615-625.
Wang E B, Zhao S L, Zheng R L. Heteropolyacids catalyst[J]. Petrochemical Technology, 1985, 14(10): 615-625.
[1] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[2] 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
[3] 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082.
[4] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[5] 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303.
[6] 李恩泽, 叶培远, 王亚欣, 康锦, 阴彩霞, 程芳琴. 溶剂极性响应型丁基-环四联吡啶提锂分子的合成及性能研究[J]. 化工学报, 2021, 72(6): 3014-3021.
[7] 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
[8] 严如奇, 洪先志, 包鑫, 徐洁, 丁雪兴. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690.
[9] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[10] 李子辉,蒋晶,金章勇,蔡泊志,曹永俊,李倩. 生物可降解PCL/PLA开孔发泡材料制备及吸油性能[J]. 化工学报, 2020, 71(12): 5842-5853.
[11] 郭晓璐,喻健良,闫兴清,徐鹏,徐双庆. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442.
[12] 刘兴鹏, 严丹丹. 化学反应体系中电磁脉冲的频谱变化[J]. 化工学报, 2019, 70(S1): 177-181.
[13] 沈伟, 彭旭东, 江锦波, 李纪云. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
[14] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[15] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!