化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4292-4303.doi: 10.11949/0438-1157.20210219

• 表面与界面工程 • 上一篇    下一篇



  1. 1.兰州理工大学石油化工学院,甘肃 兰州 730050
    2.成都一通密封股份有限公司,四川 成都 610100
  • 收稿日期:2021-02-04 修回日期:2021-03-13 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 丁雪兴 E-mail:yanruqima@126.com;dingxxseal@126.com
  • 作者简介:严如奇(1987—),男,博士研究生,工程师,yanruqima@126.com
  • 基金资助:

Flow field and steady performance of supercritical carbon dioxide dry gas seal based on turbulence model

Ruqi YAN1(),Xuexing DING1(),Jie XU1,Xianzhi HONG2,Xin BAO2   

  1. 1.College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Chengdu Yitong Seal Co. , Ltd. , Chengdu 610100, Sichuan, China
  • Received:2021-02-04 Revised:2021-03-13 Published:2021-08-05 Online:2021-08-05
  • Contact: Xuexing DING E-mail:yanruqima@126.com;dingxxseal@126.com



关键词: 超临界二氧化碳, 干气密封, 湍流效应, 离心惯性力效应, 真实气体效应, 阻塞流


In order to explore the influence of turbulence effect on the performance of S-CO2 dry gas seal, the spiral groove dry gas seal was taken as the research object. The Reynolds equation considering centrifugal inertia force effect was cited,the Ng-Pan turbulence coefficient expression was selected,and the real physical properties of carbon dioxide were calculated by using software REFPROP. Then, according to the universal energy equation, the simplified energy equation of the compressible fluid was established by introducing the average velocity including the turbulence effect and the centrifugal inertia force effect. By coupling the Reynolds equation and the simplified energy equation, the influence of the turbulence effect on the sealing performance under different working conditions and average film thickness was analyzed and discussed. The research has shown that the turbulence effect causes significant changes in the pressure and temperature distribution in the gas film flow field, hich cannot be ignored when calculating the flow field. Under different inlet pressure and inlet temperature, the opening force and leakage rate in turbulence show the same trend as that in laminar flow. Under different mean film thicknesses, the opening force after considering the turbulence effect shows a different variation rule from laminar flow, while the leakage rate shows the same variation trend as laminar flow. Under different inlet pressure, inlet temperature and average film thickness, the opening force and leakage rate in turbulent flow are lower than that in laminar flow, and the difference between the two flow states increases with the increase of inlet pressure, inlet temperature and average film thickness. At different rotational speeds, the opening force and leakage rate in turbulent flow show different trends from that in laminar flow. The results provide support for further research on the effect of turbulence on S-CO2 dry gas seal.

Key words: supercritical carbon dioxide, dry gas seal, turbulence effect, centrifugal inertia force effect, real gas effect, choked flow


  • TH 136
1 Park J H, Park H S, Kwon J G, et al. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors[J]. Energy, 2018, 160: 520-535.
2 Walnum H T, Nekså P, Nord L O, et al. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions[J]. Energy, 2013, 59: 513-520.
3 Abram T, Ion S. Generation-Ⅳ nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330.
4 Turchi C S, Ma Z W, Neises T W, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J]. Journal of Solar Energy Engineering, 2013, 135(4): 041007.
5 Kimball K J, Clementoni E M. Supercritical carbon dioxide brayton power cycle development overview[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark, 2013: 931-940.
6 Fairuz Z M, Jahn I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347.
7 Vesovic V, Wakeham W A, Olchowy G A, et al. The transport properties of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3): 763-808.
8 Constantinescu V N. On turbulent lubrication[J]. Proceedings of the Institution of Mechanical Engineers, 1959, 173(1): 881-900.
9 Constantinescu V N. Analysis of bearings operating in turbulent regime[J]. Journal of Basic Engineering, 1962, 84(1): 139-151.
10 Constantinescu V N. On gas lubrication in turbulent regime[J]. Journal of Basic Engineering, 1964, 86(3): 475-482.
11 Ng C W. Fluid dynamic foundation of turbulent lubrication theory[J]. A S L E Transactions, 1964, 7(4): 311-321.
12 Ng C W, Pan C H T. A linearized turbulent lubrication theory[J]. Journal of Basic Engineering, 1965, 87(3): 675-682.
13 Elrod H G, Ng C W. A theory for turbulent fluid films and its application to bearings[J]. Journal of Lubrication Technology, 1967, 89(3): 346-362.
14 Hirs G G. A bulk-flow theory for turbulence in lubricant films[J]. Journal of Lubrication Technology, 1973, 95(2): 137-145.
15 Simon F, Frêne J. Analysis for incompressible flow in annular pressure seals[J]. Journal of Tribology, 1992, 114(3): 431-438.
16 Brunetière N, Tournerie B, Frêne J. Influence of fluid flow regime on performances of non-contacting liquid face seals[J]. Journal of Tribology, 2002, 124(3): 515-523.
17 徐林. 湍流工况下泵的环状间隙密封内流场分析及泄漏量计算[J]. 水泵技术, 2002, (2):17-20.
Xu L. Flow field analysis and leakage calculation in annular clearance seals of pumps under turbulent flow condition[J]. Pump Technology, 2002, (2):17-20.
18 张新敏, 夏延秋, 王世杰, 等. 一种湍流润滑理论分析的工程计算方法[J]. 润滑与密封, 2002, 27(2): 4-6.
Zhang X M, Xia Y Q, Wang S J, et al. An engineering algorithm for turbulent lubrication theory[J]. Lubrication Engineering, 2002, 27(2): 4-6.
19 Brunetière N. A modified turbulence model for low Reynolds numbers: applications to hydrostatic seals[C]//Proceedings of ASME/STLE 2004 International Joint Tribology Conference. Long Beach, California, USA, 2004: 503-515.
20 刘珂, 刘莹, 刘向锋. 端面流体动压密封中一种新的湍流计算模型[J]. 润滑与密封, 2006, 31(10): 110-112.
Liu K, Liu Y, Liu X F. New turbulent lubrication model in hydrodynamic face seal[J]. Lubrication Engineering, 2006, 31(10): 110-112.
21 Brunetière N, Tournerie B. Finite element solution of inertia influenced flow in thin fluid films[J]. Journal of Tribology, 2007, 129(4): 876-886.
22 张肖寒, 孟祥铠, 梁杨杨, 等. 基于湍流模型的高速螺旋槽机械密封稳态性能研究[J]. 摩擦学学报, 2020, 40(2): 260-270.
Zhang X H, Meng X K, Liang Y Y, et al. Steady performance on high speed spiral-grooved mechanical seals based on turbulent model[J]. Tribology, 2020, 40(2): 260-270.
23 Thatte A, Zheng X Q. Hydrodynamics and sonic flow transition in dry gas seals[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, Germany, 2014.
24 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323.
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323.
25 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659.
26 Du Q W, Zhang D. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547-558.
27 Xu H J, Song P Y, Mao W Y, et al. The performance of spiral groove dry gas seal under choked flow condition considering the real gas effect[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(4): 554-566.
28 严如奇, 洪先志, 包鑫, 等. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690.
Yan R Q, Hong X Z, Bao X, et al. Phase-distribution regularity and sealing performance of supercritical carbon dioxide dry gas seal[J]. CIESC Journal, 2020, 71(8): 3681-3690.
29 沈伟. 高参数干气密封的惯性与湍流效应影响分析与型槽设计[D]. 杭州: 浙江工业大学, 2019.
Shen W. Surface groove design and inertia effect and turbulent effect analysis of high parameter dry gas seal[D]. Hangzhou: Zhejiang University of Technology, 2019.
30 江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性 [J]. 化工学报, 2021, 72(4): 2190-2202.
Jiang J B, Teng L M Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation [J]. CIESC Journal, 2021, 72(4): 2190-2202.
31 Armin L, Andreas F, Benjamin H. Development and testing of dry gas seals for turbomachinery in multiphase CO2 applications [C]// 3rd European supercritical CO2 Conference. Paris, France, 2019:1-11.
32 Taylor C M, Dowson D. Turbulent lubrication theory—application to design[J]. Journal of Lubrication Technology, 1974, 96(1): 36-46.
33 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 2版. 北京: 清华大学出版社, 2017.
Zhang Z S, Cui G X, Xu C X. Theory and Modeling of Turbulence[M]. 2nd ed. Beijing: Tsinghua University Press, 2017.
34 傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
Fu D X, Ma Y W, Li X L. Direct Numerical Simulation of Compressible Turbulence [M]. Beijing: Science Press, 2010.
35 Du Q W, Gao K K, Zhang D, et al. Effects of grooved ring rotation and working fluid on the performance of dry gas seal[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1323-1332.
36 Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
37 Fenghour A, Wakeham W A, Vesovic V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-44.
38 潘锦珊, 单鹏, 刘火星. 气体动力学基础[M]. 北京: 国防工业出版社, 2012.
Pan J S, Shan P, Liu H X. Fundamentals of Gasdynamics[M]. Beijing: National Defense Industry Press, 2012.
39 Thomas S, Brunetiere N, Toumerie B. Numerical modeling of high pressure gas face seals [J]. Journal of Tribology-Transactions of the ASME, 2006,128: 396-405.
40 Gabriel R P. Fundamentals of spiral groove noncontacting face seals [J]. Lubrication Engineering, 1994, 50(3): 215-224.
[1] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[2] 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
[3] 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082.
[4] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[5] 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254.
[6] 孙雪剑, 宋鹏云, 毛文元, 邓强国, 许恒杰, 陈维. 考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析[J]. 化工学报, 2021, 72(8): 4279-4291.
[7] 洪燕珍, 王笛, 李卓昱, 徐亚南, 王宏涛, 苏玉忠, 彭丽, 李军. 超临界二氧化碳介入的α-松油醇催化合成1,8-桉叶素[J]. 化工学报, 2021, 72(7): 3680-3685.
[8] 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
[9] 商浩, 陈源, 李孝禄, 王冰清, 李运堂, 彭旭东. 膜厚扰动下的非线性效应对干气密封性能影响研究[J]. 化工学报, 2021, 72(4): 2213-2222.
[10] 于辰,江锦波,赵文静,李纪云,彭旭东,王玉明. 基于微段组合的干气密封端面型槽结构模型及其参数影响[J]. 化工学报, 2021, 72(10): 5294-5309.
[11] 范瑜, 宋鹏云, 许恒杰. 水蒸气润滑干气密封启动过程研究[J]. 化工学报, 2020, 71(8): 3671-3680.
[12] 严如奇, 洪先志, 包鑫, 徐洁, 丁雪兴. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690.
[13] 陈维, 宋鹏云, 许恒杰, 孙雪剑. 含杂质二氧化碳实际气体干气密封性能研究[J]. 化工学报, 2020, 71(5): 2215-2229.
[14] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[15] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
Full text



No Suggested Reading articles found!