化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5430-5442.DOI: 10.11949/0438-1157.20200453
收稿日期:
2020-04-29
修回日期:
2020-08-12
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
郭晓璐
作者简介:
郭晓璐(1985—),男,博士,助理研究员,基金资助:
GUO Xiaolu1(),YU Jianliang2,YAN Xingqing2,XU Peng1,XU Shuangqing1
Received:
2020-04-29
Revised:
2020-08-12
Online:
2020-12-05
Published:
2020-12-05
Contact:
GUO Xiaolu
摘要:
超临界CO2输运管道泄漏可能造成断裂扩展、人员伤害和输运介质损失等重大事故,因此对泄漏过程中热力学参数变化规律的深入研究具有重要意义。目前对超临界CO2管道泄漏特性研究不够,有必要进行详细的文献综述分析。介绍了CO2管道泄漏特性研究背景及意义,综述了国内外CO2管道泄漏过程中减压过程、近场射流膨胀及远场扩散规律实验、理论分析和数值模拟方面的研究现状,分析了目前超临界CO2管道泄漏特性的研究不足,并对将来的研究方向进行了展望。
中图分类号:
郭晓璐,喻健良,闫兴清,徐鹏,徐双庆. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442.
GUO Xiaolu,YU Jianliang,YAN Xingqing,XU Peng,XU Shuangqing. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal, 2020, 71(12): 5430-5442.
文献来源 | 规格参数 | 初始压力/MPa | 初始温度/℃ | 相态 | 泄漏口径 (开启方式) | CO2纯度/% (杂质) | 相关理论 内容 |
---|---|---|---|---|---|---|---|
Cosham等[ | ?914.0 mm×25.4 mm,16.16 m、16.97 m和22.71 m三种长度 | 14.82、15.09和14.90 | 16.8、8.2和15.2 | 密相 (液相) | 断裂 | 87.5~100(N2) | 采用Battelle双曲线方法分析减压波速度 |
Ahmad等[ | 148 m3储罐、?219.1 mm×12.7 mm和总长226.8 m回路管道、3.3 m长断 裂管 | 15.08 | 13.1 | 密相 | 断裂 | 100 | 无 |
Drescher等[ | ?12 mm×1 mm、长139 m泄放管道 | 约12.0 | 约20.0 | 超临界 | 9.5 mm (阀门) | 70~100(N2) | 结合PR方程的一维均相理论(考虑与管壁传热) |
Cosham等[ | ?168.3 mm×10.97 mm、长144 m泄放管道 | 3.58~15.29 | 4.9~35.6 | 气相/液相/超临界 | 146.36 mm (爆破片) | 88.29~100(N2、H2、O2、SO2、CH4) | 结合SW和GERG-2008方程的一维等熵均相理论 |
Vree等[ | 长30 m、高1.3 m、内径5.08 cm螺旋管 | 约12.0 | 约20.0 | 液相 | 3 mm/6 mm/12 mm (阀门) | 100 | 无 |
Han等[ | 长51.96 m、内径3.86 mm泄放管道 | 8.5 | 20 | 液相 | 3.86mm (阀门) | 92~98(N2) | 采用无量纲方法分析了压降过程 |
Clausen等[ | 长50 km、内径60.96 cm,埋置在地下0.9 m处,两端各连接2.5 m长和内径20.32 cm竖直放空 管道 | 8.1(静置后) | 31 | 超临界 | 60.96 cm (阀门) | 99.14(N2、H2S、H2O、CH4) | 结合了SW方程的一维可压缩双流体理论 |
Han等[ | 高压CO2气瓶外接细管道(0.635 cm内径、3 m和10 m两种长度) | 5.6 | 20 | 液相 | 0.635 cm (阀门) | 100 | 无 |
李玉星 等[ | 规格?21 mm×3 mm、长14.85 m回路管道 | 7.5~9 | 40 | 超临界 | 1 mm/2 mm/2.76 mm/ 3.57 mm (阀门) | 94~98(N2) | 结合了PR方程的一维减压方程 |
姜羲等[ | ?40 mm×5 mm、长23 m循环回路管道 | 9 | 40 | 超临界 | 1 mm/3 mm/5 mm (阀门) | 100 | 相关的阻塞流和传热理论 |
刘锋等[ | 25 L储罐外接长2 m、内径4 mm管道 | 6.17~8.81 | 16.0~41.6 | 气相/液相/超临界 | 0.54 mm/0.89 mm/1.20 mm/1.38 mm (阀门) | 100 | 结合了等熵阻塞流泄漏速率方程 |
喻健良 等[ | ?273 mm×20 mm、长258 m的工业规模管道 | 4~9 | 20~40 | 气相/密相/超临界 | 15 mm/50 mm/100 mm/233 mm (爆破片) | 100 | 相关的热力学定律、气泡成核理论、传热理论 |
表1 国内外CO2管道减压过程实验研究情况
Table 1 Experimental study on the decompression process of CO2 pipeline at home and abroad
文献来源 | 规格参数 | 初始压力/MPa | 初始温度/℃ | 相态 | 泄漏口径 (开启方式) | CO2纯度/% (杂质) | 相关理论 内容 |
---|---|---|---|---|---|---|---|
Cosham等[ | ?914.0 mm×25.4 mm,16.16 m、16.97 m和22.71 m三种长度 | 14.82、15.09和14.90 | 16.8、8.2和15.2 | 密相 (液相) | 断裂 | 87.5~100(N2) | 采用Battelle双曲线方法分析减压波速度 |
Ahmad等[ | 148 m3储罐、?219.1 mm×12.7 mm和总长226.8 m回路管道、3.3 m长断 裂管 | 15.08 | 13.1 | 密相 | 断裂 | 100 | 无 |
Drescher等[ | ?12 mm×1 mm、长139 m泄放管道 | 约12.0 | 约20.0 | 超临界 | 9.5 mm (阀门) | 70~100(N2) | 结合PR方程的一维均相理论(考虑与管壁传热) |
Cosham等[ | ?168.3 mm×10.97 mm、长144 m泄放管道 | 3.58~15.29 | 4.9~35.6 | 气相/液相/超临界 | 146.36 mm (爆破片) | 88.29~100(N2、H2、O2、SO2、CH4) | 结合SW和GERG-2008方程的一维等熵均相理论 |
Vree等[ | 长30 m、高1.3 m、内径5.08 cm螺旋管 | 约12.0 | 约20.0 | 液相 | 3 mm/6 mm/12 mm (阀门) | 100 | 无 |
Han等[ | 长51.96 m、内径3.86 mm泄放管道 | 8.5 | 20 | 液相 | 3.86mm (阀门) | 92~98(N2) | 采用无量纲方法分析了压降过程 |
Clausen等[ | 长50 km、内径60.96 cm,埋置在地下0.9 m处,两端各连接2.5 m长和内径20.32 cm竖直放空 管道 | 8.1(静置后) | 31 | 超临界 | 60.96 cm (阀门) | 99.14(N2、H2S、H2O、CH4) | 结合了SW方程的一维可压缩双流体理论 |
Han等[ | 高压CO2气瓶外接细管道(0.635 cm内径、3 m和10 m两种长度) | 5.6 | 20 | 液相 | 0.635 cm (阀门) | 100 | 无 |
李玉星 等[ | 规格?21 mm×3 mm、长14.85 m回路管道 | 7.5~9 | 40 | 超临界 | 1 mm/2 mm/2.76 mm/ 3.57 mm (阀门) | 94~98(N2) | 结合了PR方程的一维减压方程 |
姜羲等[ | ?40 mm×5 mm、长23 m循环回路管道 | 9 | 40 | 超临界 | 1 mm/3 mm/5 mm (阀门) | 100 | 相关的阻塞流和传热理论 |
刘锋等[ | 25 L储罐外接长2 m、内径4 mm管道 | 6.17~8.81 | 16.0~41.6 | 气相/液相/超临界 | 0.54 mm/0.89 mm/1.20 mm/1.38 mm (阀门) | 100 | 结合了等熵阻塞流泄漏速率方程 |
喻健良 等[ | ?273 mm×20 mm、长258 m的工业规模管道 | 4~9 | 20~40 | 气相/密相/超临界 | 15 mm/50 mm/100 mm/233 mm (爆破片) | 100 | 相关的热力学定律、气泡成核理论、传热理论 |
文献来源 | 初始相态 | 计算模型或软件 | 理论方程 | 适用性评价 |
---|---|---|---|---|
Elshahomi等[ | CO2混合气 | 二维CFD全口径减压模拟(假设流体均相、无相间滑移,并考虑摩擦效应) | 二维质量、动量及能量方程,GERG-2008方程等 | 较准确预测CO2混合气性质变化及减压波传播过程 |
Mahgerefteh 等[ | 气相/超临界CO2 | 一维/二维多相流PIPETECH管道减压/断裂模型 | 一维/二维质量、动量及能量守恒方程,壁面传热理论,管道断裂理论,改进的PR方程等 | 较好模拟减压过程及三相点附近情况,以及气体减压与断裂扩展耦合过程,但对于气液两相区域存在误差 |
Witlox等[ | 气相和液相CO2 | PHASH商业软件 | 二维质量、动量及能量守恒方程,PHASH默认方程 | 适用于持续泄漏情况;较好预测泄漏率和估算固相分数 |
任科[ | 超临界CO2 | 一维管道减压模型 | 一维质量、动量及能量守恒方程,PR方程等 | 对超临界CO2性质预测较准确,模型简化计算时间较短 |
王会粉[ | 气相CO2 | 三维管道标准k-ε泄漏模型 | 三维质量、动量及能量守恒方程、标准k-ε湍流方程,理想气体方程等 | 适用于低压气相CO2 |
刘丽艳等[ | 密相CO2 | Battelle双曲线模型 | Battelle双曲线公式,BWRS方程等 | 未考虑相态变化,简化模型计算时间短 |
李玉星等[ | 气相/超临界/ 密相CO2 | 一维管道减压模型 | 一维质量、动量及能量方程,PR方程等 | 未考虑相态变化,模型简化便于 计算 |
刘斌等[ | 气相和液相CO2 | 一维管道CFD模型 | 一维质量、动量及能量方程,Lee相变模型,PR和GERG-2008方 程等 | 适用于单相和气液两相减压流动 |
表2 国内外CO2管道减压过程模拟研究情况
Table 2 Simulation study on the decompression process of CO2 pipeline at home and abroad
文献来源 | 初始相态 | 计算模型或软件 | 理论方程 | 适用性评价 |
---|---|---|---|---|
Elshahomi等[ | CO2混合气 | 二维CFD全口径减压模拟(假设流体均相、无相间滑移,并考虑摩擦效应) | 二维质量、动量及能量方程,GERG-2008方程等 | 较准确预测CO2混合气性质变化及减压波传播过程 |
Mahgerefteh 等[ | 气相/超临界CO2 | 一维/二维多相流PIPETECH管道减压/断裂模型 | 一维/二维质量、动量及能量守恒方程,壁面传热理论,管道断裂理论,改进的PR方程等 | 较好模拟减压过程及三相点附近情况,以及气体减压与断裂扩展耦合过程,但对于气液两相区域存在误差 |
Witlox等[ | 气相和液相CO2 | PHASH商业软件 | 二维质量、动量及能量守恒方程,PHASH默认方程 | 适用于持续泄漏情况;较好预测泄漏率和估算固相分数 |
任科[ | 超临界CO2 | 一维管道减压模型 | 一维质量、动量及能量守恒方程,PR方程等 | 对超临界CO2性质预测较准确,模型简化计算时间较短 |
王会粉[ | 气相CO2 | 三维管道标准k-ε泄漏模型 | 三维质量、动量及能量守恒方程、标准k-ε湍流方程,理想气体方程等 | 适用于低压气相CO2 |
刘丽艳等[ | 密相CO2 | Battelle双曲线模型 | Battelle双曲线公式,BWRS方程等 | 未考虑相态变化,简化模型计算时间短 |
李玉星等[ | 气相/超临界/ 密相CO2 | 一维管道减压模型 | 一维质量、动量及能量方程,PR方程等 | 未考虑相态变化,模型简化便于 计算 |
刘斌等[ | 气相和液相CO2 | 一维管道CFD模型 | 一维质量、动量及能量方程,Lee相变模型,PR和GERG-2008方 程等 | 适用于单相和气液两相减压流动 |
图6 超临界CO2管内压力与泄漏口附近动压变化[59]
Fig.6 Change process of the pressure inside of the pipeline and the dynamic pressure near the orifice of supercritical CO2[59]
文献来源 | 规格参数 | 初始压力/MPa | 初始温度/℃ | 相态 | 泄漏口径 (开启方式) | CO2纯度/% | 相关理论 内容 |
---|---|---|---|---|---|---|---|
Woolley 等[ | 2 m3球罐侧面连接长9 m、内径50 mm管路 | 2.84~9.50 | 室温 | 液相/密相 | 6 mm/9 mm/12 mm/25 mm (阀门) | 100 | 二维雷诺湍流理论 |
Wareing 等[ | 装置主体与Ahmad等[ | 3.55/15 | 7.45/8.75 | 气相/密相 | 24.3 mm (阀门) | 100 | 二维雷诺湍流理论 |
Ahmad 等[ | 0.5 m3容器底部连接喷嘴 | 11~13 | 10~30 | 液相 | 1/8"、1/4"和1/2" | 100 | 相关热力学、相变理论 |
姜羲 等[ | ?40 mm×5 mm、长23 m循环回路管道 | 9 | 40 | 超临界 | 1 mm/3 mm/5 mm (阀门) | 100 | 结合L-W算法的二维Euler方程 |
刘锋[ | 25 L储罐外接长2 m、内径4 mm管道 | 6.17~8.81 | 16.0~41.6 | 气相/液相/超临界 | 0.54 mm/0.89 mm/1.20 mm/1.38 mm(阀门) | 100 | 二维SST k-ω湍流理论 |
郭晓璐 等[ | ?273 mm×20 mm、长258 m管道 | 4~9 | 20~40 | 气相/密相/超临界 | 15 mm/50 mm/100 mm/233 mm(爆破片) | 100 | 激波理论、二维Realizable k-ω理论 |
表3 国内外CO2管道近场射流膨胀过程实验研究情况
Table 3 Experimental study of near-field jet expansion in CO2 pipeline at home and abroad
文献来源 | 规格参数 | 初始压力/MPa | 初始温度/℃ | 相态 | 泄漏口径 (开启方式) | CO2纯度/% | 相关理论 内容 |
---|---|---|---|---|---|---|---|
Woolley 等[ | 2 m3球罐侧面连接长9 m、内径50 mm管路 | 2.84~9.50 | 室温 | 液相/密相 | 6 mm/9 mm/12 mm/25 mm (阀门) | 100 | 二维雷诺湍流理论 |
Wareing 等[ | 装置主体与Ahmad等[ | 3.55/15 | 7.45/8.75 | 气相/密相 | 24.3 mm (阀门) | 100 | 二维雷诺湍流理论 |
Ahmad 等[ | 0.5 m3容器底部连接喷嘴 | 11~13 | 10~30 | 液相 | 1/8"、1/4"和1/2" | 100 | 相关热力学、相变理论 |
姜羲 等[ | ?40 mm×5 mm、长23 m循环回路管道 | 9 | 40 | 超临界 | 1 mm/3 mm/5 mm (阀门) | 100 | 结合L-W算法的二维Euler方程 |
刘锋[ | 25 L储罐外接长2 m、内径4 mm管道 | 6.17~8.81 | 16.0~41.6 | 气相/液相/超临界 | 0.54 mm/0.89 mm/1.20 mm/1.38 mm(阀门) | 100 | 二维SST k-ω湍流理论 |
郭晓璐 等[ | ?273 mm×20 mm、长258 m管道 | 4~9 | 20~40 | 气相/密相/超临界 | 15 mm/50 mm/100 mm/233 mm(爆破片) | 100 | 激波理论、二维Realizable k-ω理论 |
文献来源 | 初始相态 | 计算模型或软件 | 理论方程 | 适用性评价 |
---|---|---|---|---|
Woolley 等[ | 液相/密相 | 二维雷诺湍流(RANS)的CFD模型 | 二维质量、动量及能量守恒方程,RANS湍流方程,PR和SW状态方程等 | 较好模拟射流结构及相变过程,但对三相点以下的泄漏扩散模拟存在不足 |
Wareing 等[ | 气相/密相 | 二维雷诺湍流(RANS)的CFD模型 | 二维质量、动量及能量方程,RANS方程,精确三相组分方程等 | 较好模拟射流结构及相变过程,对干冰生成过程模拟存在不足 |
Liu等[ | 气相/液相/密相 | 采用了SST k-ω的二维CFD模型 | 二维质量、动量及能量守恒方程,SST k-ω湍流方程,PR方程等 | 较好模拟气液间的相变过程 |
Wareing 等[ | 密相 | 应用了拉格朗日粒子追踪技术的二维雷诺湍流模型(RANS) | 二维质量、动量及能量守恒方程,RANS方程,PR和SW方程等 | 较好模拟相变过程及干冰颗粒的分布 |
姜羲等[ | 超临界CO2 | 采用了两步L-W算法的二维CFD模型 | 二维质量、动量及能量守恒方程,RANS湍流方程,RK和SW方程等 | 较好捕捉泄漏处激波及马赫盘现象,模拟结果略大于实验值,泄漏口径越大则误差越大 |
刘锋[ | 液相CO2 | 采用了SST k-ω的二维CFD模型 | 二维质量、动量及能量守恒方程,SST k-ω方程,理想气体方程等 | 适用于低压气体 |
郭晓璐 等[ | 气相CO2 | 采用了Realizable k-ω的二维CFD模型 | 二维质量、动量及能量守恒方程,Realizable k-ω湍流方程,PR方程等 | 适用于真实气体 |
表4 国内外CO2管道近场射流膨胀过程模拟研究情况
Table 4 Simulation study of near-field jet expansion in CO2 pipeline at home and abroad
文献来源 | 初始相态 | 计算模型或软件 | 理论方程 | 适用性评价 |
---|---|---|---|---|
Woolley 等[ | 液相/密相 | 二维雷诺湍流(RANS)的CFD模型 | 二维质量、动量及能量守恒方程,RANS湍流方程,PR和SW状态方程等 | 较好模拟射流结构及相变过程,但对三相点以下的泄漏扩散模拟存在不足 |
Wareing 等[ | 气相/密相 | 二维雷诺湍流(RANS)的CFD模型 | 二维质量、动量及能量方程,RANS方程,精确三相组分方程等 | 较好模拟射流结构及相变过程,对干冰生成过程模拟存在不足 |
Liu等[ | 气相/液相/密相 | 采用了SST k-ω的二维CFD模型 | 二维质量、动量及能量守恒方程,SST k-ω湍流方程,PR方程等 | 较好模拟气液间的相变过程 |
Wareing 等[ | 密相 | 应用了拉格朗日粒子追踪技术的二维雷诺湍流模型(RANS) | 二维质量、动量及能量守恒方程,RANS方程,PR和SW方程等 | 较好模拟相变过程及干冰颗粒的分布 |
姜羲等[ | 超临界CO2 | 采用了两步L-W算法的二维CFD模型 | 二维质量、动量及能量守恒方程,RANS湍流方程,RK和SW方程等 | 较好捕捉泄漏处激波及马赫盘现象,模拟结果略大于实验值,泄漏口径越大则误差越大 |
刘锋[ | 液相CO2 | 采用了SST k-ω的二维CFD模型 | 二维质量、动量及能量守恒方程,SST k-ω方程,理想气体方程等 | 适用于低压气体 |
郭晓璐 等[ | 气相CO2 | 采用了Realizable k-ω的二维CFD模型 | 二维质量、动量及能量守恒方程,Realizable k-ω湍流方程,PR方程等 | 适用于真实气体 |
文献来源 | 规格参数 | 初始压力/MPa | 初始 温度/℃ | 相态 | 泄漏口径 (开启方式) | CO2纯度/% | 相关理论 内容 |
---|---|---|---|---|---|---|---|
Witlox等[ | 装置主体与Ahmad[ | 15 | 10、150 | 液相/超临界 | 5.08 cm (阀门) | 100 | UDM及高斯扩展 方程 |
Proust等[ | 2 m3球罐侧面连接长9 m、内径50 mm管路 | 2.84~9.50 | 室温 | 液相/密相 | 6 mm/9 mm/12 mm/ 25 mm (阀门) | 100 | 修正高斯扩散理论 方程 |
Ahmad等[ | 148 m3储罐、?219.1 mm×12.7 mm和总长226.8 m回路管道、3.3 m长的断裂管 | 15.08 | 13.1 | 密相 | 断裂 | 100 | 无 |
刘振翼等[ | 40 L气瓶外接泄放管路 | 5 | 16 | 气相 | 减压阀 | 100 | 采用了相似准则,k-ε、RNG k-ε和SST k-ε湍流理论 |
李玉星等[ | 主管道直径250 mm,壁厚12 mm,长度12 m;节流管段内径50 mm,长度4 m | 5~8 | 25~40 | 气相/液相/ 超临界 | 调节阀 | 100 | 结合了节流效应 分析 |
郭晓璐 等[ | ?273 mm×20 mm、长258 m管道 | 4~9 | 20~40 | 气相/密相/ 超临界 | 15 mm/50 mm/100 mm/233 mm (爆破片) | 100 | 二维Realizable k-ω湍流理论、高斯扩散方程 |
表5 国内外CO2管道远场扩散过程实验研究情况
Table 5 Experimental study on far-field diffusion process of CO2 pipeline at home and abroad
文献来源 | 规格参数 | 初始压力/MPa | 初始 温度/℃ | 相态 | 泄漏口径 (开启方式) | CO2纯度/% | 相关理论 内容 |
---|---|---|---|---|---|---|---|
Witlox等[ | 装置主体与Ahmad[ | 15 | 10、150 | 液相/超临界 | 5.08 cm (阀门) | 100 | UDM及高斯扩展 方程 |
Proust等[ | 2 m3球罐侧面连接长9 m、内径50 mm管路 | 2.84~9.50 | 室温 | 液相/密相 | 6 mm/9 mm/12 mm/ 25 mm (阀门) | 100 | 修正高斯扩散理论 方程 |
Ahmad等[ | 148 m3储罐、?219.1 mm×12.7 mm和总长226.8 m回路管道、3.3 m长的断裂管 | 15.08 | 13.1 | 密相 | 断裂 | 100 | 无 |
刘振翼等[ | 40 L气瓶外接泄放管路 | 5 | 16 | 气相 | 减压阀 | 100 | 采用了相似准则,k-ε、RNG k-ε和SST k-ε湍流理论 |
李玉星等[ | 主管道直径250 mm,壁厚12 mm,长度12 m;节流管段内径50 mm,长度4 m | 5~8 | 25~40 | 气相/液相/ 超临界 | 调节阀 | 100 | 结合了节流效应 分析 |
郭晓璐 等[ | ?273 mm×20 mm、长258 m管道 | 4~9 | 20~40 | 气相/密相/ 超临界 | 15 mm/50 mm/100 mm/233 mm (爆破片) | 100 | 二维Realizable k-ω湍流理论、高斯扩散方程 |
文献来源 | 初始相态 | 计算模型或软件 | 理论方程 | 适用性评价 |
---|---|---|---|---|
Witlox等[ | 液相/超临界CO2 | PHASH商业软件 | 二维质量、动量及能量守恒方程,PR状态方程等 | 适用于持续泄漏情况;泄漏率准确率在10%内,浓度分布预测较准确 |
Mazzoldi等[ | 液相 | ALOHA商业软件 | 高斯扩散方程,ALOHA默认方 程等 | 快速预测气体扩散浓度范围,有待于验证 |
Liu等[ | 密相 | 两阶段CFD模拟,对比分析DPM和全气相模型 | 一维/三维质量、动量及能量守恒方程,DPM和全气相方程,GERG-2008方程等 | 适合于液相/密相模拟,需进一步验证 |
Woolley等[ | 气相/液相/密相 | 利用CFX建立的二维拉格朗日粒子追踪CFD模型;利用FLACS建立的二维欧拉-拉格朗日CFD模型 | 二维质量、动量及能量守恒方程,SRK、PR和PC-SAFT方程等 | PC-SAFT对物性计算具有更高精度,需要实验数据进一步验证 |
刘振翼等[ | 气相 | 对比了k-ε、RNG k-ε和SST k-ε三维CFD模型 | 三维质量、动量及能量方程,k-ε、RNG k-ε和SST k-ε湍流方程,实际气体方程等 | 适用于真实气体 |
郭晓璐 等[ | 液相/超临界CO2 | 采用了Realizable k-ε的二维CFD模型 | 二维质量、动量及能量守恒方程,Realizable k-ε湍流方程,PR方程等 | 较准确模拟超临界CO2扩散浓度分布,对于密相CO2扩散过程偏差较大 |
表6 国内外CO2管道远场扩散过程模拟研究情况
Table 6 Simulation study of far-field diffusion process of CO2 pipeline at home and abroad
文献来源 | 初始相态 | 计算模型或软件 | 理论方程 | 适用性评价 |
---|---|---|---|---|
Witlox等[ | 液相/超临界CO2 | PHASH商业软件 | 二维质量、动量及能量守恒方程,PR状态方程等 | 适用于持续泄漏情况;泄漏率准确率在10%内,浓度分布预测较准确 |
Mazzoldi等[ | 液相 | ALOHA商业软件 | 高斯扩散方程,ALOHA默认方 程等 | 快速预测气体扩散浓度范围,有待于验证 |
Liu等[ | 密相 | 两阶段CFD模拟,对比分析DPM和全气相模型 | 一维/三维质量、动量及能量守恒方程,DPM和全气相方程,GERG-2008方程等 | 适合于液相/密相模拟,需进一步验证 |
Woolley等[ | 气相/液相/密相 | 利用CFX建立的二维拉格朗日粒子追踪CFD模型;利用FLACS建立的二维欧拉-拉格朗日CFD模型 | 二维质量、动量及能量守恒方程,SRK、PR和PC-SAFT方程等 | PC-SAFT对物性计算具有更高精度,需要实验数据进一步验证 |
刘振翼等[ | 气相 | 对比了k-ε、RNG k-ε和SST k-ε三维CFD模型 | 三维质量、动量及能量方程,k-ε、RNG k-ε和SST k-ε湍流方程,实际气体方程等 | 适用于真实气体 |
郭晓璐 等[ | 液相/超临界CO2 | 采用了Realizable k-ε的二维CFD模型 | 二维质量、动量及能量守恒方程,Realizable k-ε湍流方程,PR方程等 | 较准确模拟超临界CO2扩散浓度分布,对于密相CO2扩散过程偏差较大 |
16 | Drescher M, Varholm K, Munkejord S T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions [J]. Energy Procedia, 2014, 63: 2448-2457. |
17 | Cosham A, Jones D G, Armstrong K, et al. The decompression behaviour of carbon dioxide in the dense phase [C]// 2012 9th International Pipeline Conference. Calgary, Alberta, Canada, 2012. |
18 | Vree B, Ahmad M, Buit L, et al. Rapid depressurization of a CO2 pipeline — an experimental study [J]. Int. J. Greenh. Gas Con., 2015, 41: 41-49. |
19 | Han S H, Chang D, Kim J, et al. Experimental investigation of the flow characteristics of jettisoning in a CO2 carrier [J]. Process Saf. Environ., 2014, 92: 60-69. |
20 | Clausen S, Oosterkamp A, Strøm K L. Depressurization of a 50 km long 24 inches CO2 pipeline [J]. Energy Procedia, 2012, 23: 256-265. |
21 | Han S H, Kim J, Chang D. An experimental investigation of liquid CO2 release through a capillary tube [J]. Energy Procedia, 2013, 37: 4724-4730. |
22 | Han S H, Chang D, Kim J, et al. Experimental investigation of the flow characteristics of jettisoning in a CO2 carrier [J]. Process Saf. Environ., 2014, 92: 60-69. |
23 | Elshahomi A, Lu C, Michal G, et al. Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state [J]. Applied Energy, 2015, 140: 20-32. |
24 | Mahgerefteh H, Zhang P, Brown S. Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines [J]. Int. J. Greenh. Gas Con., 2016, 46: 39-47. |
25 | Mahgerefteh H, Brown S, Martynov S. A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines [J]. Greenhouse Gases: Science and Technology, 2012, 2(5): 369-379. |
26 | Witlox H W M, Harper M, Oke A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases [J]. J. Loss. Prevent Proc., 2009, 22: 795-802. |
27 | 顾帅威, 李玉星, 滕霖, 等. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(2): 805-812. |
1 | Li M J, Zhu H H, Guo J Q, et al. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries [J]. Applied Thermal Engineering, 2017, 126: 255-275. |
2 | Arripomah W, Balch R, Cather M, et al. Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: application to morrow sandstone reservoir [J]. Energy & Fuels, 2016, 30(10): 8545-8555. |
27 | Gu S W, Li Y X, Teng L, et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes [J]. Chemical Industry and Engineering Progress, 2019, 38(2): 805-812. |
28 | 滕霖, 李玉星, 刘敏, 等. CO2管道泄压过程流动特性及参数影响[J]. 油气储运, 2016, 35(11): 1179-1186. |
3 | Yan J Y, Zhang Z E. Carbon capture, utilization and storage (CCUS) [J]. Applied Energy, 2019, 235: 1289-1299. |
4 | Chong F K, Lawrence K K, Lim P P, et al. Planning of carbon capture storage deployment using process graph approach [J]. Energy, 2014, 76: 641-651. |
5 | Wang D, Zhang Y D, Adu E, et al. Influence of dense phase CO2 pipeline transportation parameters [J]. International Journal of Heat and Technology, 2016, 34(3): 479-484. |
6 | Martynov S, Brown S, Mahgerefteh H, et al. Modelling three-phase releases of carbon dioxide from high-pressure pipelines [J]. Process Safety and Environmental Protection, 2014, 92: 36-46. |
7 | Aursand E, Dumoulin S, Hammer M, et al. Fracture propagation control in CO2 pipelines: validation of a coupled fluid-structure model [J]. Engineering Structures, 2016, 123: 192-212. |
8 | Koornneef J, Spruijt M, Molag M, et al. Quantitative risk assessment of CO2 transport by pipelines — a review of uncertainties and their impacts [J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 12-27. |
9 | Mcgillivray A, Saw J L, Lisbona D, et al. A risk assessment methodology for high pressure CO2 pipelines using integral consequence modelling [J]. Process Safety & Environmental Protection, 2014, 92(1): 17-26. |
10 | Rubin E, de Coninck H. IPCC special report on carbon dioxide capture and storage [R]. UK: Cambridge University Press, 2005. |
11 | 丁春香. 二氧化碳管道爆炸事故的原因分析[J]. 工程技术, 2018, (3): 344. |
Ding C X. Cause analysis of carbon dioxide pipeline explosion accident [J]. Engineering Technology, 2018, (3): 344. | |
12 | 新华网. 在山东威海维修的福建货轮二氧化碳泄漏已致10人死亡[EB/OL]. [2019.05.26]. http: //www.xinhuanet.com/local/2019-05 /26/c_1124542586.htm. |
Xinhuanet. Ten people have died of carbon dioxide leakage from Fujian freighter repaired in Weihai, Shandong Province[EB/OL]. [2019.05.26]. http: //www.xinhuanet.com/local/2019-05/26/c_1124542586.htm. | |
13 | Munkejord S T, Hammer M. Depressurization of CO2-rich mixtures in pipes: two-phase flow modelling and comparison with experiments [J]. Int. J. Greenh. Gas Con., 2015, 37: 398-411. |
14 | Cosham A, Jones D G, Armstrong K, et al. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines [C]// 2012 9th International Pipeline Conference.Calgary, Alberta, Canada, 2012. |
15 | Ahmad M, Lowesmith B, Koeijer G D, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion [J]. Int. J. Greenh. Gas Con., 2015, 37: 340-353. |
28 | Teng L, Li Y X, Liu M, et al. Flow characteristics during CO2 pipeline venting and its influential parameters [J]. Oil & Gas Storage and Transportation, 2016, 35(11): 1179-1186. |
29 | Gu S W, Li Y X, Teng L, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases [J]. Process Safety & Environmental Protection, 2018, 120: 237-247. |
30 | Teng L, Li Y, Zhao Q, et al. Decompression characteristics of CO2 pipelines following rupture [J]. Journal of Natural Gas Science & Engineering, 2016, 36: 213-223. |
31 | Xie Q Y, Tu R, Jiang X, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system [J]. Applied Energy, 2014, 130: 574-580. |
32 | Li K, Zhou X J, Tu R, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline [J]. Energy, 2014, 71: 665-672. |
33 | 李康. 小尺度超临界二氧化碳泄漏过程物理机理研究[D]. 合肥: 中国科学技术大学, 2016. |
Li K. The physical mechanism of the supercritical CO2 leakage process in small scale laboratory conditions [D]. Hefei: University of Science and Technology China, 2016. | |
34 | 刘锋. 超临界压力CO2管道泄漏特征与扩散规律研究[D]. 北京: 清华大学, 2016. |
Liu F. Study on the leakage and diffusion behavior of supercritical pressure CO2 from pipelines [D]. Beijing: Tsinghua University, 2016. | |
35 | 任科. 超临界二氧化碳管道断裂理论和控制方法研究[D]. 西安: 西安石油大学, 2018. |
Ren K. Study on theory and control method of supercritical carbon dioxide pipe fracture [D]. Xian: Xian Shiyou Univesity, 2018. | |
36 | 王会粉. 长输管道CO2小孔泄漏特性的理论研究[D]. 北京: 北京工业大学, 2015. |
Wang H F. A theoretical study of the small-hole leakage characteristics of CO2 pipelines [D]. Beijing: Beijing University of Technology, 2015. | |
37 | 刘丽艳, 吴瑕. 密相CO2输送管道的裂纹扩展推动力计算研究[J]. 机械强度, 2017, 39(6): 1445-1449. |
Liu L Y, Wu X. Diving force calculation for the fracture propagation of dense phase CO2 transmission pipeline [J]. Journal of Mechanical Strength, 2017, 39(6): 1445-1449. | |
38 | 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181. |
Liu B, You Z P, Deng J J. A one-dimensional CFD model of CO2 pipelines following full bore rupture [J]. CIESC Journal, 2019, 70(6): 2174-2181. | |
39 | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J].化工学报, 2015, 66(11): 4327-4334. |
Yu J L, Guo X L, Yan X Q, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale [J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
40 | Guo X L, Yan X Q, Yu J L, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline [J]. Applied Energy, 2016, 178: 189-197. |
41 | Guo X L, Yan X Q, Yu J L, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2016, 118: 1066-1078. |
42 | Cao Q, Yan X Q, Guo X L, et al. Temperature evolution and heat transfer during the release of CO2 from a large-scale pipeline [J]. Int. J. Greenh. Gas Con., 2018, 74: 40-48. |
43 | 喻健良, 朱海龙, 郭晓璐, 等. 超临界CO2管道减压过程中的热力学特性[J]. 化工学报, 2017, 68(9): 3350-3357. |
Yu J L, Zhu H L, Guo X L, et al. Thermodynamic properties during depressurization process of supercritical CO2 pipeline [J]. CIESC Journal, 2017, 68(9): 3350-3357. | |
44 | 闫振汉, 喻健良, 闫兴清, 等. 密相CO2管道泄漏失压过程热力学特性[J]. 化工学报, 2019, 70(8): 3071-3077. |
Yan Z H, Yu J L, Yan X Q, et al. Thermodynamic characteristics during decompression process of dense phase CO2 pipeline leakage [J]. CIESC Journal, 2019, 70(8): 3071-3077. | |
45 | Brown S, Martynov S, Mahgerefteh H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines [J]. Int. J. Greenh. Gas Con., 2013, 17: 349-356. |
46 | Martynov S B, Talemi R H, Brown S, et al. Assessment of fracture propagation in pipelines transporting impure CO2 streams [J]. Energy Procedia, 2017, 114: 6685-6697. |
47 | Woolley R M, Fairweather M, Wareing C J, et al. Experimental measurement and Reynolds-averaged Navier–Stokes modelling of the near-field structure of multi-phase CO2 jet releases [J]. Int. J. Greenh. Gas Con., 2013, 18: 139-149. |
48 | Woolley R M, Fairweather M, Wareing C J, et al. CO2 PipeHaz: quantitative hazard assessment for next generation CO2 pipelines [J]. Energy Procedia, 2014, 63: 2510-2529. |
49 | Wareing C J, Fairweather M, Falle S A E G, et al. Validation of a model of gas and dense phase CO2 jet releases for carbon capture and storage application [J]. Int. J. Greenh. Gas Con., 2014, 20: 254-271. |
50 | Wen J, Heidari A, Xu B P, et al. Dispersion of carbon dioxide from vertical vent and horizontal releases—a numerical study [J]. J. Process Mechanical Engineering, 2013, 227: 125-139. |
51 | Ahmad M, Osch M B, Buit L, et al. Study of the thermohydraulics of CO2 discharge from a high pressure reservoir [J]. Int. J. Greenh. Gas Con., 2013, 19: 63-73. |
52 | Liu X, Godbole A, Lu C, et al. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state [J]. Applied Energy, 2014, 126: 56-68. |
53 | Wareing C J, Woolley R M, Fairweather M, et al. A composite equation of state for the modeling of soniccarbon dioxide jets in carbon capture and storage scenarios [J]. AIChE J., 2013, 59: 3928-3942. |
54 | Wareing C J, Fairweather M, Falle S A E G, et al. Modelling punctures of buried high-pressure dense phase CO2 pipelines in CCS applications [J]. Int. J. Greenh. Gas Con., 2014, 29: 231-247. |
55 | Zhou X J, Li K, Tu R, et al. A modelling study of the multiphase leakage flow from pressurized CO2 pipeline [J]. J. Hazard Mater., 2016, 306: 286-294. |
56 | Li K, Zhou X J, Tu R, et al. An experiment investigation of supercritical CO2 accidental release from a pressurized pipeline [J]. J. Supercrit Fluid, 2016, 107: 298-306. |
57 | Li K, Zhou X, Tu R, et al. Investigation of flow characteristics in small-scale highly pressurized leaked CO2 jet plume from pipeline [J]. International Journal of Thermal Sciences, 2019, 141: 160-170. |
58 | Guo X L, Yan X Q, Yu J L, et al. Under-expanded jets and dispersions during the release of high pressure CO2 from a large-scale pipeline [J]. Energy, 2017, 119: 53-66. |
59 | Guo X L, Yan X Q, Yu J L, et al. Under-expanded jets and dispersions in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 183: 1279-1291. |
60 | Yan X Q, Guo X L, Liu Z G, et al. Release and dispersion behaviour of carbon dioxide released from a small-scale underground pipeline[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 165-173. |
61 | Witlox H W M, Harper M, Oke A, et al. Validation of discharge and atmospheric dispersion for unpressurised and pressurised carbon dioxide releases [J]. Process Saf. Environ., 2014, 92: 3-16. |
62 | Witlox H W M, Harper M, Oke A, et al. PHAST validation of discharge and atmospheric dispersion for pressurised carbon dioxide releases [J]. J. Loss Prevent Proc., 2014, 30: 243-255. |
63 | Jamois D, Proust C, Hebrard J. Hardware and instrumentation to investigate massive releases of dense phase CO2 [J]. The Canadian Journal of Chemical Engineering, 2015, 93(2): 234-240. |
64 | Cumber P S. Outflow from fractured pipelines transporting supercritical ethylene [J]. J. Loss Prevent Proc., 2007, 20: 26-37. |
65 | Witlox H W M, Stene J, Harper M, et al. Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios [J]. Energy Procedia, 2011, 4: 2253-2260. |
66 | Mazzoldi A, Hill T, Colls J J. CO2 transportation for carbon capture and storage: sublimation of carbon dioxide from a dry ice bank [J]. Int. J. Greenh. Gas Con., 2008, 2: 210-218. |
67 | Liu X, Godbole A, Lu C, et al. Study of the consequences of CO2 released from high-pressure pipelines [J]. Atmos. Environ., 2015, 116: 51-64. |
68 | Woolley R M, Fairweather M, Wareing C J, et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain [J]. Int. J. Greenh. Gas Con., 2014, 27: 221-238. |
69 | 刘振翼, 周轶, 黄平, 等. CO2管线泄漏扩散小尺度实验研究[J]. 化工学报, 2012, 63(5): 1651-1659. |
Liu Z Y, Zhou Y, Huang P, et al. Scaled field test for CO2 leakage and dispersion from pipelines[J]. CIESC Journal, 2012, 63(5): 1651-1659. | |
70 | Xing J, Liu Z Y, Huang P, et al. CFD validation of scaling rules for reduced-scale field releases of carbon dioxide [J]. Applied Energy, 2014, 115: 525-530. |
71 | 赵青. 含杂质CO2不同相态管输节流及减压波特性研究[D]. 青岛: 中国石油大学, 2015. |
Zhao Q. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase [D]. Qingdao: China University of Petroleum, 2015. | |
72 | Wang C, Li Y X, Teng L, et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines [J]. Experimental Thermal and Fluid Science, 2019, 105: 77-84. |
73 | 陈霖. CO2管道介质泄漏体积分数分布及危险区域实验[J]. 油气储运, 2017, 36(10): 1162-1167. |
Chen L. Experiment on the medium volume fraction distribution and hazardous area in the case of CO2 pipeline leakage [J]. Oil & Gas Storage and Transportation, 2017, 36(10): 1162-1167. | |
74 | 喻健良, 郑阳光, 闫兴清, 等. 工业规模CO2管道大孔泄漏过程中的射流膨胀及扩散规律[J]. 化工学报, 2017, 68(6): 2298-2305. |
Yu J L, Zheng Y G, Yan X Q, et al. Under-expanded jets and dispersion during big hole leakage of high pressure CO2 pipeline in industrial scale [J]. CIESC Journal, 2017, 68(6): 2298-2305. | |
75 | Guo X L, Chen S Y, Yan X Q, et al. Flow characteristics and dispersion during the leakage of high pressure CO2 from an industrial scale pipeline [J]. Int. J. Greenh. Gas Con., 2018, 73: 70-78. |
76 | 郭晓璐. CO2管道泄漏中介质压力响应、相态变化和扩散特性研究[D]. 大连: 大连理工大学, 2017. |
Guo X L. Pressure response, phase transition and dispersion characteristics in CO2 releases from an industrial scale pipeline [D]. Dalian: Dalian University of Technology, 2017. | |
77 | Pham L H H P, Rusli R. A review of experimental and modelling methods for accidental release behaviour of high-pressurised CO2 pipelines at atmospheric environment [J]. Process Saf. Environ., 2016, 104: 48-84. |
78 | Liu X, Godbole A, Lu C, et al. Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies [J]. Applied Energy, 2019, 250: 32-47. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||