化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1534-1545.doi: 10.11949/0438-1157.20211466

• 流体力学与传递现象 • 上一篇    下一篇

方形微通道内超临界CO2流动换热特性研究

许婉婷(),许波,王鑫,陈振乾()   

  1. 东南大学能源与环境学院,江苏 南京 210096
  • 收稿日期:2021-10-13 修回日期:2022-03-01 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 陈振乾 E-mail:2638228992@qq.com;zqchen@seu.edu.cn
  • 作者简介:许婉婷(1996—),女,硕士研究生,2638228992@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目(52006031)

Heat transfer characteristics of supercritical CO2 in square microchannels

Wanting XU(),Bo XU,Xin WANG,Zhenqian CHEN()   

  1. School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2021-10-13 Revised:2022-03-01 Published:2022-04-05 Online:2022-04-25
  • Contact: Zhenqian CHEN E-mail:2638228992@qq.com;zqchen@seu.edu.cn

摘要:

采用SST k-ω湍流模型对加热条件下超临界CO2在方形微通道内的流动换热特性进行了数值模拟。通过对比三种壁面平均传热系数、浮升力参数和二次流强度的沿程变化研究了管型、热通量、质量流量和倾斜角度对微通道内流动换热性能的影响。结果表明:水平方形微通道的整体换热性能优于相同水力直径的半圆形微通道。流体域典型截面的温度分布、速度分布和湍动能分布等信息可以很好地解释水平方向流动时上、下壁面传热差异的现象。减小热通量、增大质量流量或减小流体流动方向与重力方向之间的夹角,可提高方形微通道的整体换热水平。该模拟结果对以超临界CO2为工质的微通道换热器的设计和优化具有一定的理论指导意义。

关键词: 超临界二氧化碳, 数值模拟, 传热, 浮升力效应, 二次流强度

Abstract:

The heat transfer characteristic of supercritical CO2 in tubes is the key factor affecting the overall performance of heat exchangers. In recent years, square microchannels have shown broad application prospects in compact and efficient printed circuit heat exchangers. The SST k-ω turbulent model was used to simulate the heat transfer characteristics of supercritical CO2 in square microchannels under uniform heating conditions. The effects of flow channel shape, heat flux, mass flow rate and inclination angle on heat transfer performance in microchannels were studied by comparing three average heat transfer coefficients, buoyancy parameter and secondary flow intensity. The results show that the overall heat transfer performance of horizontal square microchannels is better than that of semicircular microchannels with the same hydraulic diameter. The temperature distribution, velocity distribution and turbulent kinetic energy distribution of typical sections in the fluid domain can well explain the non-uniform heat transfer phenomenon in horizontal microchannels. The overall heat transfer level of square microchannels can be improved by decreasing the heat flux, increasing the mass flow rate or decreasing the angle between the flow direction and the gravity direction. The simulation results have certain theoretical significance for the design and optimization of microchannel heat exchangers using supercritical CO2 as working medium.

Key words: supercritical CO2, numerical simulation, heat transfer, buoyancy effect, second flow intensity

中图分类号: 

  • TK 124

图1

CO2在压力为8.0 MPa时的热物性曲线"

图2

物理模型示意图"

表1

不同模拟工况的边界条件设置"

入口温度Tin/K

热通量q /

(kW/m2)

质量流量G /

(kg/(m2·s))

倾斜角度α /(°)
303.1540,60,804000
303.1560300,400,5000
303.15604000,30,60,90,-30,-60,-90

表2

不同尺寸网格下的流体温度和平均传热系数偏差"

序号

网格数量

(径向)×横向

网格总数/万个流体温度最大 相对误差/%平均传热系数最大相对误差/%
Grid1(48×48)×500115.20.103.69
Grid2(48×48)×1000230.40.033.11
Grid3(48×48)×2000460.80.012.29
Grid4(54×54)×500145.80.091.98
Grid5(54×54)×1000291.60.020.86
Grid6(54×54)×2000583.2

图3

模拟结果与传热关联式对比"

图4

方管和半圆管的壁面平均传热系数和流体温度(P=8.0 MPa, Tin=303.15 K,G=400 kg/(m2·s),q=60 kW/m2)"

图5

重力对壁面温度的影响(P=0.8 MPa, Tin=303.15 K, q=60 kW/m2, G=400 kg/(m2·s))"

图6

热通量对传热系数的影响(P=8.0 MPa, Tin=303.15 K,G=400 kg/(m2·s))"

图7

质量流量对传热系数的影响(P=8.0 MPa, Tin=303.15 K,q=60 kW/m2)"

图8

倾斜角度对传热系数的影响(P=8.0 MPa, Tin=303.15 K,q=60 kW/m2, G=400 kg/(m2·s))"

图9

特征截面处的典型参数分布"

图10

特征截面处的轴向速度和湍动能径向分布曲线"

图11

沿程浮升力参数和二次流强度变化曲线(P=8.0 MPa, Tin=303.15 K,q=60 kW/m2,G=400 kg/(m2·s))"

图12

热通量对浮升力参数和二次流强度的影响(P=8.0 MPa, Tin=303.15 K,G=400 kg/(m2·s))"

图13

质量流量对浮升力参数和二次流强度的影响(P=8.0 MPa, Tin=303.15 K,q=60 kW/m2)"

图14

倾斜角度对二次流强度和壁面温度的影响(P=8.0 MPa, Tin=303.15 K,q=60 kW/m2,G=400 kg/(m2·s))"

1 Wu P, Ma Y D, Gao C T, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767.
2 Jiang P X, Zhang F Z, Xu R N. Thermodynamic analysis of a solar-enhanced geothermal hybrid power plant using CO2 as working fluid[J]. Applied Thermal Engineering, 2017, 116: 463-472.
3 Ma Y T, Liu Z Y, Tian H. A review of transcritical carbon dioxide heat pump and refrigeration cycles[J]. Energy, 2013, 55: 156-172.
4 Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675.
5 Gkountas A A, Stamatelos A M, Kalfas A I. Recuperators investigation for high temperature supercritical carbon dioxide power generation cycles[J]. Applied Thermal Engineering, 2017, 125: 1094-1102.
6 Zhao P H, Wan T, Jin Y X, et al. Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate[J]. Physics of Fluids, 2021, 33(5): 055114.
7 Zhu B G, Zhu X J, Xie J, et al. Heat transfer prediction of supercritical carbon dioxide in vertical tube based on artificial neural networks[J]. Journal of Thermal Science, 2021, 30(5): 1751-1767.
8 Zhang S J, Xu X X, Liu C, et al. Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube[J]. Applied Thermal Engineering, 2019, 157: 113687.
9 Yan C S, Xu J L, Zhu B G, et al. Numerical analysis on heat transfer characteristics of supercritical CO2 in heated vertical up-flow tube[J]. Materials (Basel, Switzerland), 2020, 13(3): 723.
10 Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124(3): 413-420.
11 Kim T H, Kwon J G, Kim M H, et al. Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube[J]. Experimental Thermal and Fluid Science, 2018, 92: 222-230.
12 Wang J Y, Guan Z Q, Gurgenci H, et al. Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube[J]. Energy Conversion and Management, 2018, 157: 536-548.
13 Kumar N, Basu D N. Computational appraisal of the thermalhydraulic characteristics of supercritical carbon dioxide in heated mini-channel for HVAC applications[J]. IOP Conference Series: Earth and Environmental Science, 2020, 463(1): 012048.
14 Xiang M R, Guo J F, Huai X L, et al. Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J]. The Journal of Supercritical Fluids, 2017, 130: 389-398.
15 杨传勇, 徐进良, 王晓东, 等. 超临界参数CO2在倾斜管内对流换热数值模拟[J]. 热力发电, 2013, 42(1): 26-35.
Yang C Y, Xu J L, Wang X D, et al. Numerical simulation of convective heat transfer for supercritical CO2 in inclined tubes[J]. Thermal Power Generation, 2013, 42(1): 26-35.
16 闫晨帅, 朱兵国, 尹少军, 等. 倾斜圆管内超临界压力CO2流动换热数值分析[J]. 中国科学: 技术科学, 2020, 50(5): 571-581.
Yan C S, Zhu B G, Yin S J, et al. Numerical analysis on flow and heat transfer characteristics of supercritical pressure CO2 in inclined tube[J]. Scientia Sinica (Technologica), 2020, 50(5): 571-581.
17 Zhang L N, Liu M S, Dong Q W, et al. Numerical research of heat transfer of supercritical COR2R in channels[J]. Energy and Power Engineering, 2011, 3(2): 167-173.
18 Guo J F, Huai X L. Coordination analysis of cross-flow heat exchanger under high variations in thermodynamic properties[J]. International Journal of Heat and Mass Transfer, 2017, 113: 935-942.
19 Li H Z, Zhang Y F, Zhang L X, et al. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle[J]. International Journal of Heat and Mass Transfer, 2016, 98: 204-218.
20 Zhang Y D, Peng M J, Xia G L, et al. Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube[J]. Applied Thermal Engineering, 2019, 154: 380-392.
21 Wen Z X, Lv Y G, Li Q, et al. Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118922.
22 Li Y, Sun F, Xie G N, et al. Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes[J]. Applied Thermal Engineering, 2019, 153: 655-668.
23 Zhang S J, Xu X X, Liu C, et al. The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 274-289.
24 Chen W, Yang Z N, Yang L, et al. Numerical investigation of heat transfer and flow characteristics of supercritical CO2 in U-duct[J]. Applied Thermal Engineering, 2018, 144: 532-539.
25 Kim J K, Jeon H K, Lee J S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4908-4911.
26 Hasan M I, Rageb A A, Yaghoubi M, et al. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger[J]. International Journal of Thermal Sciences, 2009, 48(8): 1607-1618.
27 Besarati S M, Yogi Goswami D, Stefanakos E K. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles[J]. Journal of Solar Energy Engineering, 2015, 137(3): 031018.
28 Zhang H Y, Guo J F, Huai X L, et al. Thermodynamic performance analysis of supercritical pressure CO2 in tubes[J]. International Journal of Thermal Sciences, 2019, 146: 106102.
29 Lei Y C, Chen Z Q. Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels[J]. International Journal of Refrigeration, 2018, 90: 46-57.
30 Khalesi J, Sarunac N. Numerical analysis of flow and conjugate heat transfer for supercritical CO2 and liquid sodium in square microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1187-1199.
31 Yang Z N, Chen W, Chyu M K. Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes[J]. Applied Thermal Engineering, 2018, 145: 705-715.
32 Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
33 Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034.
34 Wang L, Pan Y C, Lee J D, et al. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120136.
35 Yang C Y, Xu J L, Wang X D, et al. Mixed convective flow and heat transfer of supercritical CO2 in circular tubes at various inclination angles[J]. International Journal of Heat and Mass Transfer, 2013, 64: 212-223.
36 Wang X C, Xiang M J, Huo H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787.
[1] 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927.
[2] 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999.
[3] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[4] 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099.
[5] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[6] 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981.
[7] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[8] 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498.
[9] 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826.
[10] 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
[11] 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
[12] 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569.
[13] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[14] 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763.
[15] 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!