化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4458-4468.DOI: 10.11949/0438-1157.20210232
收稿日期:
2021-02-07
修回日期:
2021-04-15
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
姜岩
作者简介:
彭蕾(1997—),女,硕士研究生,基金资助:
Lei PENG(),Yan JIANG(),Ruxin XIA
Received:
2021-02-07
Revised:
2021-04-15
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yan JIANG
摘要:
铬及含铬的复合污染环境问题日益突出,生物修复技术处理铬污染场地具有应用潜力。本文剖析了微生物吸附、吸收、转化及外排Cr(Ⅵ)等作用机制;结合当前的污染场地状况,概述了多因子复合胁迫下生物去除Cr(Ⅵ)的研究现状,指出金属离子和氧阴离子胁迫对细胞生长代谢及Cr(Ⅵ)的去除产生复杂影响,成为当前的研究热点;论述了在复合污染条件下利用生物修复技术去除Cr(Ⅵ)的研究进展。提出当前生物修复铬污染场地技术,正经历着由突破功能型菌株选育向探索生物解毒机制的转变,以现有认知可以证实生物去除Cr(Ⅵ)核心技术的应用潜力;限制生物修复技术发展的瓶颈在于修复成本和技术载体等工艺本身问题,在今后的研究中有必要给予足够的关注,以推动生物修复技术走向应用。
中图分类号:
彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468.
Lei PENG, Yan JIANG, Ruxin XIA. The mechanism and research progress of bioremediation of Cr(Ⅵ) pollution[J]. CIESC Journal, 2021, 72(9): 4458-4468.
微生物 | 生物吸附剂产生菌 | 影响因素 | 最大吸附量 |
---|---|---|---|
真菌 | Aspergillus niger[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 97.1 mg/g |
Penicillium chrysogenum XJ-1[ | 反应时间、Cr(Ⅵ)浓度、接种量 | 52.7 mg/g | |
细菌 | Bacillus salmalaya 139SI[ | pH、反应时间、Cr(Ⅵ)浓度 | 20.4 mg/g |
Bosea sp.Zer-1[ | pH、Cr(Ⅵ)浓度、接种量 | 55.0 mg/L | |
微藻 | Spirulina sp.[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 90.9 mg/g |
Spirulina platensis[ | pH、反应时间、Cr(Ⅵ)浓度、接种量 | 100.0 mg/g |
表1 用于Cr(Ⅵ)吸附的生物吸附剂
Table 1 Biological absorbent for Cr(Ⅵ) adsorption
微生物 | 生物吸附剂产生菌 | 影响因素 | 最大吸附量 |
---|---|---|---|
真菌 | Aspergillus niger[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 97.1 mg/g |
Penicillium chrysogenum XJ-1[ | 反应时间、Cr(Ⅵ)浓度、接种量 | 52.7 mg/g | |
细菌 | Bacillus salmalaya 139SI[ | pH、反应时间、Cr(Ⅵ)浓度 | 20.4 mg/g |
Bosea sp.Zer-1[ | pH、Cr(Ⅵ)浓度、接种量 | 55.0 mg/L | |
微藻 | Spirulina sp.[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 90.9 mg/g |
Spirulina platensis[ | pH、反应时间、Cr(Ⅵ)浓度、接种量 | 100.0 mg/g |
微生物 | 菌株 | 还原部位 | pH | 温度/℃ | 转速/(r/min) | 时间/h | 初始浓度/(mg/L) | 去除率/% |
---|---|---|---|---|---|---|---|---|
细菌 | Aeribacillus pallidus BK1[ | 细胞内 | 7.5 | 60 | 180 | 36 | 100.0 | 86.9 |
Bacillus sp.SFC 500-1E[ | 细胞内 | 7.0 | 28 | 150 | 72 | 25.0 | 80.0 | |
Bacillus sp.CRB-1[ | 细胞内 | 7.0 | 42 | — | 24 | 50.0 | 100.0 | |
Geobacter sulfurreducens PCA[ | 细胞内、外 | 7.0 | 30 | 180 | 144 | 5.2 | 99.7 | |
Pseudochrobactrum saccharolyticum W1[ | 细胞内、表面 | — | 30 | 180 | 60 | 200.0 | 53.7 | |
Pseudomonas brenneri[ | 细胞内、表面 | 6.0 | 30 | — | — | 60.0 | 96.3 | |
Oceanobacillus oncorhynchi W4[ | 细胞内、表面 | 9.0 | 30 | 180 | 72 | 200.0 | 74.2 | |
Shewanella sp.[ | 细胞内、外 | 7.0 | 37 | 180 | 1/3 | 500.0 | 89.0 | |
Bacillus sp.CRB-B1[ | 细胞内、表面、外 | 7.0 | 37 | 150 | 24 | 150.0 | 89.6 | |
Bacillus sp.TCL[ | 细胞内、表面、外 | 7.5 | 37 | 150 | 16 | 200.0 | 100.0 | |
真菌 | A. flavus CR500[ | 细胞内 | 6.5 | 28 | — | 16 | 100.0 | 99.0 |
Cellulosimicrobium funkei sp.AR6[ | 细胞内 | 7.0 | 35 | 200 | 40 | 200.0 | 100.0 | |
Penicillium oxalicum SL2[ | 细胞内、外 | — | 30 | 180 | 96 | 210.4 | 64.3 |
表2 具有Cr(Ⅵ)转化能力的微生物
Table 2 Microorganisms with Cr(Ⅵ) transformation ability
微生物 | 菌株 | 还原部位 | pH | 温度/℃ | 转速/(r/min) | 时间/h | 初始浓度/(mg/L) | 去除率/% |
---|---|---|---|---|---|---|---|---|
细菌 | Aeribacillus pallidus BK1[ | 细胞内 | 7.5 | 60 | 180 | 36 | 100.0 | 86.9 |
Bacillus sp.SFC 500-1E[ | 细胞内 | 7.0 | 28 | 150 | 72 | 25.0 | 80.0 | |
Bacillus sp.CRB-1[ | 细胞内 | 7.0 | 42 | — | 24 | 50.0 | 100.0 | |
Geobacter sulfurreducens PCA[ | 细胞内、外 | 7.0 | 30 | 180 | 144 | 5.2 | 99.7 | |
Pseudochrobactrum saccharolyticum W1[ | 细胞内、表面 | — | 30 | 180 | 60 | 200.0 | 53.7 | |
Pseudomonas brenneri[ | 细胞内、表面 | 6.0 | 30 | — | — | 60.0 | 96.3 | |
Oceanobacillus oncorhynchi W4[ | 细胞内、表面 | 9.0 | 30 | 180 | 72 | 200.0 | 74.2 | |
Shewanella sp.[ | 细胞内、外 | 7.0 | 37 | 180 | 1/3 | 500.0 | 89.0 | |
Bacillus sp.CRB-B1[ | 细胞内、表面、外 | 7.0 | 37 | 150 | 24 | 150.0 | 89.6 | |
Bacillus sp.TCL[ | 细胞内、表面、外 | 7.5 | 37 | 150 | 16 | 200.0 | 100.0 | |
真菌 | A. flavus CR500[ | 细胞内 | 6.5 | 28 | — | 16 | 100.0 | 99.0 |
Cellulosimicrobium funkei sp.AR6[ | 细胞内 | 7.0 | 35 | 200 | 40 | 200.0 | 100.0 | |
Penicillium oxalicum SL2[ | 细胞内、外 | — | 30 | 180 | 96 | 210.4 | 64.3 |
胁迫类型 | 微生物 | 胁迫因子 | Cr(Ⅵ)去除 |
---|---|---|---|
金属离子 | P. brenneri[ | Fe(Ⅱ)、Mn(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)、Mg(Ⅱ) | 抑制 |
Chelatococcus daeguensis TAD1[ | Cu(Ⅱ)、Zn(Ⅱ)、Ni(Ⅱ) | 抑制 | |
Bacillus sp.TCL[ | Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ) | 无明显影响 | |
氧阴离子 | Bacillus sp.CRB-B1[ | SO42-、HCO3-、NO3- | 抑制(NO3-) |
P. oxalicum SL2[ | SO42- | 促进 |
表3 其他污染因子的胁迫对细胞去除Cr(Ⅵ)的影响
Table 3 Effects of removal of Cr(Ⅵ) by cells under other pollution factors stress
胁迫类型 | 微生物 | 胁迫因子 | Cr(Ⅵ)去除 |
---|---|---|---|
金属离子 | P. brenneri[ | Fe(Ⅱ)、Mn(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)、Mg(Ⅱ) | 抑制 |
Chelatococcus daeguensis TAD1[ | Cu(Ⅱ)、Zn(Ⅱ)、Ni(Ⅱ) | 抑制 | |
Bacillus sp.TCL[ | Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ) | 无明显影响 | |
氧阴离子 | Bacillus sp.CRB-B1[ | SO42-、HCO3-、NO3- | 抑制(NO3-) |
P. oxalicum SL2[ | SO42- | 促进 |
微生物 | 有机物 类型 | Cr(Ⅵ)浓度/(mg/L) | Cr(Ⅵ) 去除率/% | 有机物浓度/ (mg/L) | 有机物 去除率/% |
---|---|---|---|---|---|
P. putida SKG-1 MTCC[ | 五氯苯酚 | 500.0 | 80.0 | 100 | 100.0 |
Serratia marcescens ZD-9[ | 邻二氯苯 | 20.0 | 80.0 | 1290 | 90.0 |
Pseudomonas gessardii sp.LZ-E[ | 萘 | 10.0 | 95.0 | 800 | 77.0 |
Bacillus sp.[ | 苯酚 | 100.0 | — | 50 | — |
Aeromonas hydrophila LZ-MG14[ | 孔雀石绿 | 18.3 | 93.7 | 200 | 96.9 |
表4 典型共去除含Cr(Ⅵ)复合有机污染物的微生物
Table 4 Typical microorganisms of co-removal of Cr(Ⅵ) combined organic pollutants
微生物 | 有机物 类型 | Cr(Ⅵ)浓度/(mg/L) | Cr(Ⅵ) 去除率/% | 有机物浓度/ (mg/L) | 有机物 去除率/% |
---|---|---|---|---|---|
P. putida SKG-1 MTCC[ | 五氯苯酚 | 500.0 | 80.0 | 100 | 100.0 |
Serratia marcescens ZD-9[ | 邻二氯苯 | 20.0 | 80.0 | 1290 | 90.0 |
Pseudomonas gessardii sp.LZ-E[ | 萘 | 10.0 | 95.0 | 800 | 77.0 |
Bacillus sp.[ | 苯酚 | 100.0 | — | 50 | — |
Aeromonas hydrophila LZ-MG14[ | 孔雀石绿 | 18.3 | 93.7 | 200 | 96.9 |
图4 不同培养条件对Lysinibacillus fusiformis共去除的影响(MM无机盐培养基、Cr(Ⅵ) 50 mg/L、润滑油500 mg/L、酵母浸粉0.5%、胰蛋白胨1%)
Fig.4 Effects of different culture conditions on the co-removal of Lysinibacillus fusiformis
1 | Jobby R, Jha P, Yadav A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere, 2018, 207: 255-266. |
2 | Elahi A, Arooj I, Bukhari D A, et al. Successive use of microorganisms to remove chromium from wastewater[J]. Applied Microbiology and Biotechnology, 2020, 104(9): 3729-3743. |
3 | Dhal B, Thatoi H N, Das N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. Journal of Hazardous Materials, 2013, 250/251: 272-291. |
4 | 胡静, 李东, 胡思扬, 等. 牺牲铁阳极法修复铬(Ⅵ)污染土壤实验研究[J]. 重庆工商大学学报(自然科学版), 2017, 34(4): 95-100. |
Hu J, Li D, Hu S Y, et al. Cr(Ⅵ)-contaminated soil remediation by sacrificing Fe-anode[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2017, 34(4): 95-100. | |
5 | Thatoi H, Das S, Mishra J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review[J]. Journal of Environmental Management, 2014, 146: 383-399. |
6 | 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(6): 1-8, 23. |
Wang X R, Li L, Yan X H, et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering, 2020, 38(6): 1-8, 23. | |
7 | Prabhakaran D C, Bolaños-Benitez V, Sivry Y, et al. Mechanistic studies on the bioremediation of Cr(Ⅵ) using Sphingopyxis macrogoltabida SUK2c, a Cr(Ⅵ) tolerant bacterial isolate[J]. Biochemical Engineering Journal, 2019, 150: 107292. |
8 | Kumar V, Dwivedi S K. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater[J]. Chemosphere, 2019, 237: 124567. |
9 | Abigail M E A, Samuel M S, Chidambaram R. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box-Behnken optimization, equilibrium, kinetics and thermodynamic studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 156-164. |
10 | Ren B Q, Zhang Q, Zhang X C, et al. Biosorption of Cr(Ⅵ) from aqueous solution using dormant spores of Aspergillus niger[J]. RSC Advances, 2018, 8(67): 38157-38165. |
11 | Xu X J, Zhang Z Y, Huang Q Y, et al. Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions[J]. Geomicrobiology Journal, 2018, 35(1): 40-49. |
12 | Dadrasnia A, Chuan Wei K S, Shahsavari N, et al. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(Ⅵ) from aqueous solution[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15321-15338. |
13 | Zhang H, Liu L, Chang Q, et al. Biosorption of Cr(Ⅵ) ions from aqueous solutions by a newly isolated Bosea sp. strain Zer-1 from soil samples of a refuse processing plant[J]. Canadian Journal of Microbiology, 2015, 61(6): 399-408. |
14 | Rezaei H. Biosorption of chromium by using Spirulina sp[J]. Arabian Journal of Chemistry, 2016, 9(6): 846-853. |
15 | dal Magro C, Deon M C, Thomé A, et al. Biossorção passiva de cromo (Ⅵ) através da microalga Spirulina platensis[J]. Química Nova, 2013, 36(8): 1139-1145. |
16 | Banerjee S, Misra A, Chaudhury S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials, 2019, 367: 215-223. |
17 | Tan H, Wang C, Zeng G Q, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. Journal of Hazardous Materials, 2020, 386: 121628. |
18 | Zeng Q, Hu Y T, Yang Y R, et al. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium[J]. Journal of Hazardous Materials, 2019, 368: 149-155. |
19 | Joutey N T, Sayel H, Bahafid W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms[J]. Reviews of Environmental Contamination and Toxicology, 2015, 233: 45-69. |
20 | Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(Ⅵ) resistance in bacteria and fungi[J]. FEMS Microbiology Reviews, 2014, 38(4): 633-659. |
21 | Tang X, Huang Y, Li Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699. |
22 | Thompson D K, Chourey K, Wickham G S, et al. Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge[J]. BMC Genomics, 2010, 11(1): 1-16. |
23 | Monsieurs P, Moors H, Houdt R, et al. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network[J]. BioMetals, 2011, 24(6): 1133-1151. |
24 | Henne K L, Nakatsu C H, Thompson D K, et al. High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes[J]. BMC Microbiology, 2009, 9(1): 199. |
25 | Gang H Y, Xiao C Y, Xiao Y, et al. Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress[J]. Environment International, 2019, 127: 94-102. |
26 | Karpus J, Bosscher M, Ajiboye I, et al. Chromate binding and removal by the molybdate-binding protein ModA[J]. ChemBioChem, 2017, 18(7): 633-637. |
27 | Holland S L, Avery S V. Actin-mediated endocytosis limits intracellular Cr accumulation and Cr toxicity during chromate stress[J]. Toxicological Sciences, 2009, 111(2): 437-446. |
28 | 苏长青. 铬污染土壤中Cr(Ⅵ)的微生物还原及Cr(Ⅲ)的稳定性研究[D]. 长沙: 中南大学, 2010. |
Su C Q. Chromium pollution in the soil microbial reduction of Cr (Ⅵ) and Cr (Ⅲ) stability study[D]. Changsha: Central South University, 2010. | |
29 | Zhu Y F, Yan J W, Xia L, et al. Mechanisms of Cr(Ⅵ) reduction by Bacillus sp. CRB-1, a novel Cr(Ⅵ)-reducing bacterium isolated from tannery activated sludge[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109792. |
30 | Ma Y, Zhong H, He Z G. Cr(Ⅵ) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(Ⅵ)-reducing thermophile isolated from Tengchong geothermal region, China[J]. Chemical Engineering Journal, 2019, 371: 524-534. |
31 | Ontañon O M, Fernandez M, Agostini E, et al. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(Ⅵ) by Bacillus sp. SFC 500-1E[J]. Environmental Science and Pollution Research, 2018, 25(16): 16111-16120. |
32 | Gong Y F, Werth C J, He Y X, et al. Intracellular versus extracellular accumulation of hexavalent chromium reduction products by Geobacter sulfurreducens PCA[J]. Environmental Pollution, 2018, 240: 485-492. |
33 | Li M K, Zhuo Y T, Hu Y T, et al. Exploration on the bioreduction mechanism of Cr(Ⅵ) by a gram-positive bacterium: Pseudochrobactrum saccharolyticum W1[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109636. |
34 | Banerjee S, Kamila B, Barman S, et al. Interlining Cr(Ⅵ) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater[J]. Journal of Environmental Management, 2019, 233: 271-282. |
35 | Kheirabadi M, Mahmoodi R, Mollania N, et al. Fast chromium removal by Shewanella sp.: an enzymatic mechanism depending on serine protease[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 143-152. |
36 | Karthik C, Ramkumar V S, Pugazhendhi A, et al. Biosorption and biotransformation of Cr(Ⅵ) by novel Cellulosimicrobium funkei strain AR6[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 282-290. |
37 | Luo Y T, Ye B H, Ye J E, et al. Ca2+ and SO42- accelerate the reduction of Cr(Ⅵ) by Penicillium oxalicum SL2[J]. Journal of Hazardous Materials, 2020, 382: 121072. |
38 | Eswaramoorthy S, Poulain S, Hienerwadel R, et al. Crystal structure of ChrR—a quinone reductase with the capacity to reduce chromate[J]. PLoS One, 2012, 7(4): e36017. |
39 | Robins K J, Hooks D O, Rehm B H, et al. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium[J]. PLoS One, 2013, 8(3): e59200. |
40 | Shi X, Dalal N S. Generation of hydroxyl radical by chromate in biologically relevant systems: role of Cr(V) complexes versus tetraperoxochromate(V)[J]. Environ Health Perspect, 1994, 102(): 231-236. |
41 | Park C H, Gonzalez C F, Ackerley D F, et al. Molecular engineering of soluble bacterial proteins with chromate reductase activity[C]//Hinchee R E, Porta A, Pellei M. Proceedings of the 1st International Conference on Remediation of Contaminated Sediments. Venice, Italy: Battelle Press, 2002: 103-111. |
42 | 夏险, 李明顺, 武士娟, 等. 微生物铬转化和抗性机制与生物修复研究进展[J]. 微生物学通报, 2017, 44(7): 1668-1675. |
Xia X, Li M S, Wu S J, et al. Research progress in microbial chromium-transformation and resistance and bioremediation[J]. Microbiology China, 2017, 44(7): 1668-1675. | |
43 | Kumar V, Dwivedi S K. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109734. |
44 | Nakatsu C H, Barabote R, Thompson S, et al. Complete genome sequence of Arthrobacter sp. strain FB24[J]. Standards in Genomic Sciences, 2013, 9(1): 106-116. |
45 | Shaw D R, Dussan J. Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31[J]. International Biodeterioration & Biodegradation, 2018, 127: 46-61. |
46 | Reyes-Gallegos R I, Ramírez-Díaz M I, Cervantes C. Chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400[J]. World Journal of Microbiology and Biotechnology, 2016, 32(3): 1-5. |
47 | 周思敏. Serratia sp.S2中ChrA1和ChrB基因的功能及抗铬(Ⅵ)机制研究[D]. 重庆: 重庆医科大学, 2018. |
Zhou S M. Chromium resistance characteristics of chromium (Ⅵ) resistance genes ChrA1 and ChrB in Serratia sp.S2[D]. Chongqing: Chongqing Medical University, 2018. | |
48 | He Y, Dong L L, Zhou S M, et al. Chromium resistance characteristics of Cr(Ⅵ) resistance genes ChrA and ChrB in Serratia sp. S2[J]. Ecotoxicology and Environmental Safety, 2018, 157: 417-423. |
49 | Flores-Alvarez L J, Corrales-Escobosa A R, Cortés-Penagos C, et al. The Neurospora crassa chr-1 gene is up-regulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation[J]. Current Genetics, 2012, 58(5/6): 281-290. |
50 | Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatory Fe(Ⅲ) reduction by Geothrix fermentans[J]. Appl. Environ. Microbiol., 2002, 68(5): 2294-2299. |
51 | Long B B, Ye J E, Ye Z, et al. Cr(Ⅵ) removal by Penicillium oxalicum SL2: reduction with acidic metabolites and form transformation in the mycelium[J]. Chemosphere, 2020, 253: 126731. |
52 | Shi L, Xue J W, Liu B H, et al. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp., are involved in the efficient removal of hexavalent chromium from waste water[J]. Ecotoxicology and Environmental Safety, 2018, 161: 430-436. |
53 | Li H, Huang S B, Zhang Y Q. Cr(Ⅵ) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals[J]. Journal of Microbiology, 2016, 54(9): 602-610. |
54 | Sarangi A, Krishnan C. Comparison of in vitro Cr(Ⅵ) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil[J]. Bioresource Technology, 2008, 99(10): 4130-4137. |
55 | Rahman Z, Singh V P. Cr(Ⅵ) reduction by Enterobacter sp. DU17 isolated from the tannery waste dump site and characterization of the bacterium and the Cr(Ⅵ) reductase[J]. International Biodeterioration & Biodegradation, 2014, 91: 97-103. |
56 | Volland S, Bayer E, Baumgartner V, et al. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions[J]. Journal of Plant Physiology, 2014, 171(2): 154-163. |
57 | Xu W H, Jian H, Liu Y G, et al. Bioreduction of chromate by an isolated Bacillus anthracis Cr-4 with soluble Cr(Ⅲ) product[J]. Water, Air, & Soil Pollution, 2015, 226(3): 1-9. |
58 | Zhong L, Lai C Y, Shi L D, et al. Nitrate effects on chromate reduction in a methane-based biofilm[J]. Water Research, 2017, 115: 130-137. |
59 | An Q, Deng S M, Zhao B, et al. Simultaneous denitrification and hexavalent chromium removal by a newly isolated Stenotrophomonas maltophilia strain W26 under aerobic conditions[J]. Environmental Chemistry, 2021, 18(1): 20. |
60 | Wang G Y, Zhang B G, Li S, et al. Simultaneous microbial reduction of vanadium (Ⅴ) and chromium (Ⅵ) by Shewanella loihica PV-4[J]. Bioresource Technology, 2017, 227: 353-358. |
61 | Ge S, Ge S C. Simultaneous Cr(Ⅵ) reduction and Zn(Ⅱ) biosorption by Stenotrophomonas sp. and constitutive expression of related genes[J]. Biotechnology Letters, 2016, 38(5): 877-884. |
62 | Yin Y J, Li D, Wang Y Q, et al. Concurrent removal of Mn(Ⅱ) and Cr(Ⅵ) by Achromobacter sp. TY3-4[J]. Geomicrobiology Journal, 2019, 36(4): 317-325. |
63 | Bachate S P, Nandre V S, Ghatpande N S, et al. Simultaneous reduction of Cr(Ⅵ) and oxidation of As(Ⅲ) by Bacillus firmus TE7 isolated from tannery effluent[J]. Chemosphere, 2013, 90(8): 2273-2278. |
64 | Mishra A, Malik A. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus[J]. Water Research, 2012, 46(16): 4991-4998. |
65 | Yu X, Jiang Y M, Huang H Y, et al. Simultaneous aerobic denitrification and Cr(Ⅵ) reduction by Pseudomonas brassicacearum LZ-4 in wastewater[J]. Bioresource Technology, 2016, 221: 121-129. |
66 | An Q, Deng S M, Xu J, et al. Simultaneous reduction of nitrate and Cr(Ⅵ) by Pseudomonas aeruginosa strain G12 in wastewater[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110001. |
67 | Garg S K, Tripathi M, Singh S K, et al. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups[J]. Environmental Science and Pollution Research, 2013, 20(4): 2288-2304. |
68 | Xu W H, Duan G F, Liu Y G, et al. Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9[J]. Biodegradation, 2018, 29(6): 605-616. |
69 | Huang H Y, Wu K J, Khan A, et al. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium[J]. Bioresource Technology, 2016, 207: 370-378. |
70 | Gupta A, Balomajumder C. Simultaneous removal of Cr(Ⅵ) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass[J]. Journal of Water Process Engineering, 2015, 6: 1-10. |
71 | Ji J, Kulshreshtha S, Kakade A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater[J]. International Biodeterioration & Biodegradation, 2020, 150: 104939. |
72 | Agarry S E, Aremu M O, Aworanti O A. Kinetic modelling and half-life study on bioremediation of soil co-contaminated with lubricating motor oil and lead using different bioremediation strategies[J]. Soil and Sediment Contamination: an International Journal, 2013, 22(7): 800-816. |
73 | Ibarrolaza A, Coppotelli B M, del Panno M T, et al. Application of the knowledge-based approach to strain selection for a bioaugmentation process of phenanthrene- and Cr(Ⅵ)-contaminated soil[J]. Journal of Applied Microbiology, 2011, 111(1): 26-35. |
[1] | 梁兴唐, 李凤枝, 钟书明, 张瑞瑞, 焦淑菲, 汪双双, 尹艳镇. 聚乙烯亚胺原位改性多孔灯芯草高效吸附废水中的Cr(Ⅵ)[J]. 化工学报, 2021, 72(6): 3380-3389. |
[2] | 朱文会, 王夏晖, 杨欣桐, 王兴润, 何俊, 黄国鑫, 季国华. 海藻酸钙固定化零价铁抗团聚及堵塞的作用机制[J]. 化工学报, 2020, 71(5): 2344-2351. |
[3] | 薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报, 2019, 70(10): 3825-3835. |
[4] | 仇雅丽, 李长明, 王德亮, 李文松, 余剑, 高士秋, 许光文. 赤泥/煤基铁炭材料的制备及其脱除废水Cr(Ⅵ)的性能[J]. 化工学报, 2018, 69(7): 3216-3225. |
[5] | 唐存多, 史红玲, 和子涵, 丁朋举, 焦铸锦, 阚云超, 姚伦广. 重组大肠杆菌全细胞用于苯乙酮酸的绿色生物合成[J]. 化工学报, 2018, 69(6): 2627-2631. |
[6] | 王亮, 田聃, 刘安琪, 赵斌, 马树双, 李君敬, 张朝晖, 惠旭. GO@MIL-101的制备及其对水中Cr(Ⅵ)的去除[J]. 化工学报, 2017, 68(5): 2105-2111. |
[7] | 李玥琪, 胡敬芳, 邹小平, 高国伟. 基于石墨烯纳米材料的水质Cr(Ⅵ)电化学传感器[J]. 化工学报, 2017, 68(12): 4816-4823. |
[8] | 赵雨佳, 张根林, 周晓宏, 李春. 核糖核酸开关用于微生物细胞工厂的智能与精细调控[J]. 化工学报, 2015, 66(10): 3811-2819. |
[9] | 付敏杰1, 聂尧1, 穆晓清1, 徐岩1,2, 肖荣3. 新型异亮氨酸双加氧酶及其重组大肠杆菌合成羟基异亮氨酸[J]. 化工进展, 2014, 33(11): 3037-3044. |
[10] | 杨振兴,陶志成,何玉财,王利群,张跃,邢震,龚磊,潘雪鹤. 红球菌CCZU10-1选择性氧化拆分外消旋苯甲亚砜的性能[J]. 化工进展, 2014, 33(10): 2744-2747. |
[11] | 朱文会, 王兴润, 董良飞, 王琪, 何洁. 海藻酸钠包覆型Fe-Cu双金属PRB填料的除Cr(Ⅵ)特性[J]. 化工学报, 2013, 64(9): 3373-3380. |
[12] | 李兰松, 杨永珍, 贾虎生, 杨利擎, 曹秋芬, 刘旭光. 铜抗性菌株的筛选及其对Cu2+的吸附性能[J]. 化工学报, 2013, 64(9): 3381-3389. |
[13] | 张金丽, 孙道华, 景孝廉, 黄加乐, 郑艳梅, 李清彪. Au(Ⅲ)离子在黑曲霉菌上的吸附热力学和动力学特性[J]. 化工学报, 2013, 64(4): 1283-1292. |
[14] | 马强强,赵广荣. 左旋多巴合成研究进展[J]. 化工进展, 2013, 32(06): 1367-1371. |
[15] | 李晓森,卢滇楠,刘 铮. 采用废弃农林生物质吸附和回收重金属研究进展[J]. 化工进展, 2012, 31(04 ): 915-919. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||