化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 494-502.DOI: 10.11949/0438-1157.20201487
梁坤峰1(),王莫然1,高美洁1,吕振伟2,徐红玉1,董彬1,高凤玲1
收稿日期:
2020-10-28
修回日期:
2021-01-12
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
梁坤峰
作者简介:
梁坤峰(1975—),男,博士,教授,基金资助:
LIANG Kunfeng1(),WANG Moran1,GAO Meijie1,LYU Zhenwei2,XU Hongyu1,DONG Bin1,GAO Fengling1
Received:
2020-10-28
Revised:
2021-01-12
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIANG Kunfeng
摘要:
纯电动车集成热管理(ITM)系统能有效提高车辆的能量利用效率,然而兼顾电池、客舱热需求的集成热管理系统结构复杂,针对ITM系统的串联和并联两种构成形式,基于AMESim软件搭建系统仿真模型,从热力学的能量和角度比较分析两种系统的性能。结果表明:串联系统的性能系数和
效率均明显高于并联系统,制冷模式下,分别平均高7.6%、23.6%;热泵模式下,分别平均高13%、7.6%。随着压缩机转速的增大,两种系统的部件总
损失均明显增大,压缩机和室外换热器的
损失成为主要
损失,此外在并联系统中电子膨胀阀的
损失占比较大。
中图分类号:
梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502.
LIANG Kunfeng, WANG Moran, GAO Meijie, LYU Zhenwei, XU Hongyu, DONG Bin, GAO Fengling. Thermodynamic analysis of performance of integrated thermal management system for pure electric vehicle[J]. CIESC Journal, 2021, 72(S1): 494-502.
参数 | 数值 |
---|---|
压缩机 | |
排量 | 27 ml/r |
转速 | 1500~6000 r/min |
舱外换热器 | |
尺寸 | 425 mm×310 mm×20 mm |
流程 | 12 8 7 5 |
空气迎风面积 | 136000 mm2 |
制冷剂对流换热面积 | 582857 mm2 |
舱内换热器 | |
尺寸 | 284 mm×248 mm×47 mm |
流程 | 9 9 9 |
空气迎风面积 | 70308 mm2 |
制冷剂对流换热面积 | 200880 mm2 |
总风量 | 650 kg/h |
新风量 | 67.2 kg/h |
表1 空调系统参数
Table 1 Parameters of air conditioning system
参数 | 数值 |
---|---|
压缩机 | |
排量 | 27 ml/r |
转速 | 1500~6000 r/min |
舱外换热器 | |
尺寸 | 425 mm×310 mm×20 mm |
流程 | 12 8 7 5 |
空气迎风面积 | 136000 mm2 |
制冷剂对流换热面积 | 582857 mm2 |
舱内换热器 | |
尺寸 | 284 mm×248 mm×47 mm |
流程 | 9 9 9 |
空气迎风面积 | 70308 mm2 |
制冷剂对流换热面积 | 200880 mm2 |
总风量 | 650 kg/h |
新风量 | 67.2 kg/h |
参数 | 数值 |
---|---|
电池单体 | |
尺寸 | 189 mm×127 mm×9.4 mm |
额定电压 | 3.6 V |
额定容量 | 20 A·h |
密度 | 2212 kg/m3 |
比热容 | 1770 J/(kg·K) |
车辆 | |
太阳辐射 | 1000/0 W/m2 |
太阳辐射吸收率 | 0.75 |
容积 | 3 m3 |
热容 | 7 kJ/K |
外部换热面积 | 8 m2 |
质量 | 1400 kg |
电池换热器 | |
铝板尺寸 | 340 mm×390 mm×15 mm |
表2 电池及车辆参数
Table 2 Parameters of battery and vehicle
参数 | 数值 |
---|---|
电池单体 | |
尺寸 | 189 mm×127 mm×9.4 mm |
额定电压 | 3.6 V |
额定容量 | 20 A·h |
密度 | 2212 kg/m3 |
比热容 | 1770 J/(kg·K) |
车辆 | |
太阳辐射 | 1000/0 W/m2 |
太阳辐射吸收率 | 0.75 |
容积 | 3 m3 |
热容 | 7 kJ/K |
外部换热面积 | 8 m2 |
质量 | 1400 kg |
电池换热器 | |
铝板尺寸 | 340 mm×390 mm×15 mm |
图4 热泵模式压缩机进出口温度、压力随转速的变化(1 bar=105 Pa)
Fig.4 Variation of inlet and outlet temperature and pressure of compressor with compressor speed in heat pump mode
压缩机转速/ (r/min) | ![]() | |||
---|---|---|---|---|
制冷,A | 制冷,B | 制热,A | 制热,B | |
2000 | 23.18 | 28.71 | 38.92 | 42.45 |
3000 | 23.80 | 29.49 | 37.18 | 40.22 |
4000 | 22.38 | 27.98 | 34.88 | 37.65 |
5000 | 21.07 | 26.11 | 32.80 | 33.86 |
6000 | 20.18 | 24.42 | 30.73 | 33.68 |
表3 系统效率
Table 3 System exergy efficiency
压缩机转速/ (r/min) | ![]() | |||
---|---|---|---|---|
制冷,A | 制冷,B | 制热,A | 制热,B | |
2000 | 23.18 | 28.71 | 38.92 | 42.45 |
3000 | 23.80 | 29.49 | 37.18 | 40.22 |
4000 | 22.38 | 27.98 | 34.88 | 37.65 |
5000 | 21.07 | 26.11 | 32.80 | 33.86 |
6000 | 20.18 | 24.42 | 30.73 | 33.68 |
1 | Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review [J]. Energy Storage Materials, 2018, 10: 246-267. |
2 | Ren D S, Hsu H, Li R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries [J]. eTransportation, 2019, 2: 100034. |
3 | Cen J W, Jiang F M. Li-ion power battery temperature control by a battery thermal management and vehicle cabin air conditioning integrated system [J]. Energy for Sustainable Development, 2020, 57: 141-148. |
4 | Lei Z G, Zhang Y W, Lei X G. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate [J]. International Journal of Heat and Mass Transfer, 2018, 121: 275-281. |
5 | 梁坤峰, 米国强, 徐红玉, 等. 动力电池冷热双向循环热管理系统性能分析[J]. 农业工程学报, 2020, 36(14): 114-120. |
Liang K F, Mi G Q, Xu H Y, et al. Performance analysis of power battery cooling or heating two-way cycling thermal management system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 114-120. | |
6 | Liaw B Y, Roth E P, Jungst R G, et al. Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells [J]. Journal of Power Sources, 2003, 119/120/121: 874-886. |
7 | Al-Zareer M, Dincer I, Rosen M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J]. Journal of Power Sources, 2017, 363: 291-303. |
8 | Smith J, Hinterberger M, Schneider C, et al. Energy savings and increased electric vehicle range through improved battery thermal management [J]. Applied Thermal Engineering, 2016, 101: 647-656. |
9 | Zhang T S, Gao Q, Wang G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process [J]. Applied Thermal Engineering, 2017, 116: 655-662. |
10 | Yang Y, Yang L J, Du X Z, et al. Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack [J]. Applied Thermal Engineering, 2019, 163: 114401. |
11 | Qian Z, Li Y M, Rao Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling [J]. Energy Conversion and Management, 2016, 126: 622-631. |
12 | Rao Z H, Wang Q C, Huang C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system [J]. Applied Energy, 2016, 164: 659-669. |
13 | Huang R, Li Z, Hong W H, et al. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management [J]. Energy Reports, 2020, 6: 8-19. |
14 | Liang J L, Gan Y H, Li Y, et al. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures [J]. Energy, 2019, 189: 116233. |
15 | Tian Z, Gu B. Analyses of an integrated thermal management system for electric vehicles [J]. International Journal of Energy Research, 2019, 43(11): 5788-5802. |
16 | Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle [J]. Applied Thermal Engineering, 2018, 136: 16-27. |
17 | Tian Z, Gu B, Gao W Z, et al. Performance evaluation of an electric vehicle thermal management system with waste heat recovery [J]. Applied Thermal Engineering, 2020, 169: 114976. |
18 | Hamut H S, Dincer I, Naterer G F. Exergoenvironmental analysis of hybrid electric vehicle thermal management systems [J]. Journal of Cleaner Production, 2014, 67: 187-196. |
19 | 何贤, 邓冬, 苏健, 等. 8 kW车载动力电池直冷系统试验研究[J]. 制冷学报, 2019, 40(2): 20-27. |
He X, Deng D, Su J, et al. Experimental research on an 8 kW direct cooling unit for power battery used in a vehicle [J]. Journal of Refrigeration, 2019, 40(2): 20-27. | |
20 | 张桂英. 纯电动汽车一体式热管理及节能技术研究[D]. 北京: 中国科学院大学, 2017. |
Zhang G Y. Research on integrated thermal management and energy-saving technology for electric vehicle [D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
21 | 申明, 高青, 王炎, 等. 电动汽车电池热管理系统设计与分析[J]. 浙江大学学报(工学版), 2019, 53(7): 1398-1406, 1430. |
Shen M, Gao Q, Wang Y, et al. Design and analysis of battery thermal management system for electric vehicle [J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1398-1406, 1430. | |
22 | Cen J W, Li Z B, Jiang F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management [J]. Energy for Sustainable Development, 2018, 45: 88-95. |
23 | Shen M, Gao Q. System simulation on refrigerant-based battery thermal management technology for electric vehicles [J]. Energy Conversion and Management, 2020, 203: 112176. |
24 | Han X X, Zou H M, Tian C Q, et al. Numerical study on the heating performance of a novel integrated thermal management system for the electric bus [J]. Energy, 2019, 186: 115812. |
25 | Thomas K E, Newman J. Heats of mixing and of entropy in porous insertion electrodes [J]. Journal of Power Sources, 2003, 119/120/121: 844-849. |
26 | Fayazbakhsh M A, Bahrami M. Comprehensive modeling of vehicle air conditioning loads using heat balance method [C]// SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2013. |
27 | Torregrosa-Jaime B, Bjurling F, Corberán J M, et al. Transient thermal model of a vehicle's cabin validated under variable ambient conditions [J]. Applied Thermal Engineering, 2015, 75: 45-53. |
28 | Zhang K X, Li M, Yang C H, et al. Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system [J]. Journal of Thermal Science, 2020, 29(2): 408-422. |
29 | Chen J Y, Havtun H, Palm B. Conventional and advanced exergy analysis of an ejector refrigeration system [J]. Applied Energy, 2015, 144: 139-151. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[3] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[4] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[5] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[6] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[7] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[8] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[9] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[10] | 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144. |
[11] | 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
[12] | 杨田雨, 葛天舒. 干燥剂吸附等温曲线对除湿换热器除湿性能的影响[J]. 化工学报, 2022, 73(12): 5367-5375. |
[13] | 杨伟, 王昱杰, 方凯斌, 邹汉波, 陈胜洲, 刘自力. Co-Mn比例调控对LiNi0.8Co0.10-y Mn0.05+y Al0.05O2材料性能影响探究[J]. 化工学报, 2022, 73(12): 5615-5624. |
[14] | 王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 檀杰, 方道来. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物负极材料制备与储锂性能研究[J]. 化工学报, 2022, 73(12): 5625-5637. |
[15] | 贾理男, 杜一博, 郭邦军, 张希. 基于硫化物电解质的全固态锂离子电池负极研究进展[J]. 化工学报, 2022, 73(12): 5289-5304. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||