1 |
Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review [J]. Energy Storage Materials, 2018, 10: 246-267.
|
2 |
Ren D S, Hsu H, Li R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries [J]. eTransportation, 2019, 2: 100034.
|
3 |
Cen J W, Jiang F M. Li-ion power battery temperature control by a battery thermal management and vehicle cabin air conditioning integrated system [J]. Energy for Sustainable Development, 2020, 57: 141-148.
|
4 |
Lei Z G, Zhang Y W, Lei X G. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate [J]. International Journal of Heat and Mass Transfer, 2018, 121: 275-281.
|
5 |
梁坤峰, 米国强, 徐红玉, 等. 动力电池冷热双向循环热管理系统性能分析[J]. 农业工程学报, 2020, 36(14): 114-120.
|
|
Liang K F, Mi G Q, Xu H Y, et al. Performance analysis of power battery cooling or heating two-way cycling thermal management system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 114-120.
|
6 |
Liaw B Y, Roth E P, Jungst R G, et al. Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells [J]. Journal of Power Sources, 2003, 119/120/121: 874-886.
|
7 |
Al-Zareer M, Dincer I, Rosen M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J]. Journal of Power Sources, 2017, 363: 291-303.
|
8 |
Smith J, Hinterberger M, Schneider C, et al. Energy savings and increased electric vehicle range through improved battery thermal management [J]. Applied Thermal Engineering, 2016, 101: 647-656.
|
9 |
Zhang T S, Gao Q, Wang G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process [J]. Applied Thermal Engineering, 2017, 116: 655-662.
|
10 |
Yang Y, Yang L J, Du X Z, et al. Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack [J]. Applied Thermal Engineering, 2019, 163: 114401.
|
11 |
Qian Z, Li Y M, Rao Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling [J]. Energy Conversion and Management, 2016, 126: 622-631.
|
12 |
Rao Z H, Wang Q C, Huang C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system [J]. Applied Energy, 2016, 164: 659-669.
|
13 |
Huang R, Li Z, Hong W H, et al. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management [J]. Energy Reports, 2020, 6: 8-19.
|
14 |
Liang J L, Gan Y H, Li Y, et al. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures [J]. Energy, 2019, 189: 116233.
|
15 |
Tian Z, Gu B. Analyses of an integrated thermal management system for electric vehicles [J]. International Journal of Energy Research, 2019, 43(11): 5788-5802.
|
16 |
Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle [J]. Applied Thermal Engineering, 2018, 136: 16-27.
|
17 |
Tian Z, Gu B, Gao W Z, et al. Performance evaluation of an electric vehicle thermal management system with waste heat recovery [J]. Applied Thermal Engineering, 2020, 169: 114976.
|
18 |
Hamut H S, Dincer I, Naterer G F. Exergoenvironmental analysis of hybrid electric vehicle thermal management systems [J]. Journal of Cleaner Production, 2014, 67: 187-196.
|
19 |
何贤, 邓冬, 苏健, 等. 8 kW车载动力电池直冷系统试验研究[J]. 制冷学报, 2019, 40(2): 20-27.
|
|
He X, Deng D, Su J, et al. Experimental research on an 8 kW direct cooling unit for power battery used in a vehicle [J]. Journal of Refrigeration, 2019, 40(2): 20-27.
|
20 |
张桂英. 纯电动汽车一体式热管理及节能技术研究[D]. 北京: 中国科学院大学, 2017.
|
|
Zhang G Y. Research on integrated thermal management and energy-saving technology for electric vehicle [D]. Beijing: University of Chinese Academy of Sciences, 2017.
|
21 |
申明, 高青, 王炎, 等. 电动汽车电池热管理系统设计与分析[J]. 浙江大学学报(工学版), 2019, 53(7): 1398-1406, 1430.
|
|
Shen M, Gao Q, Wang Y, et al. Design and analysis of battery thermal management system for electric vehicle [J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1398-1406, 1430.
|
22 |
Cen J W, Li Z B, Jiang F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management [J]. Energy for Sustainable Development, 2018, 45: 88-95.
|
23 |
Shen M, Gao Q. System simulation on refrigerant-based battery thermal management technology for electric vehicles [J]. Energy Conversion and Management, 2020, 203: 112176.
|
24 |
Han X X, Zou H M, Tian C Q, et al. Numerical study on the heating performance of a novel integrated thermal management system for the electric bus [J]. Energy, 2019, 186: 115812.
|
25 |
Thomas K E, Newman J. Heats of mixing and of entropy in porous insertion electrodes [J]. Journal of Power Sources, 2003, 119/120/121: 844-849.
|
26 |
Fayazbakhsh M A, Bahrami M. Comprehensive modeling of vehicle air conditioning loads using heat balance method [C]// SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2013.
|
27 |
Torregrosa-Jaime B, Bjurling F, Corberán J M, et al. Transient thermal model of a vehicle's cabin validated under variable ambient conditions [J]. Applied Thermal Engineering, 2015, 75: 45-53.
|
28 |
Zhang K X, Li M, Yang C H, et al. Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system [J]. Journal of Thermal Science, 2020, 29(2): 408-422.
|
29 |
Chen J Y, Havtun H, Palm B. Conventional and advanced exergy analysis of an ejector refrigeration system [J]. Applied Energy, 2015, 144: 139-151.
|