化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5625-5637.DOI: 10.11949/0438-1157.20221116
王朋朋(), 贾洋刚, 邵霞, 程婕, 冒爱琴(), 檀杰, 方道来
收稿日期:
2022-08-08
修回日期:
2022-11-01
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
冒爱琴
作者简介:
王朋朋(1995—),男,硕士研究生,wang_pengpeng2022@163.com
基金资助:
Pengpeng WANG(), Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO(), Jie TAN, Daolai FANG
Received:
2022-08-08
Revised:
2022-11-01
Online:
2022-12-05
Published:
2023-01-17
Contact:
Aiqin MAO
摘要:
通过溶液燃烧法成功合成了一系列非活性K+掺杂的尖晶石型 (K x CoCrFeMnNi)3/(5+x)O4(x=0,0.5,1,1.5)高熵氧化物锂离子电池负极材料,系统研究了K+掺杂对结构和储锂性能的影响。结果表明:随着K+掺杂量的增加,均可制备出具有单一尖晶石结构的纳米晶粉体材料,其中等摩尔K+掺杂的 (K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4高熵氧化物负极材料具有最高的比容量、优异的循环稳定性和倍率性能。(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4电极在200 mA·g-1电流密度下,首次放电比容量为1295 mA·h·g-1(首次库仑效率78%);随着循环的进行,可逆比容量先降低后增加,循环150次可逆比容量增加至1505 mA·h·g-1;即使在1000 mA·g-1大电流密度下循环500次后仍具有1402 mA·h·g-1的可逆比容量(均高于理论比容量898 mA·h·g-1)。低价非活性K+的掺杂由于电荷补偿效应使晶格常数降低,但高构型熵稳定的晶体结构提高了循环稳定性;丰富的表面氧空位、较小的晶粒尺寸和介孔结构,增加了赝电容贡献率和电子/离子传输能力,从而显著提升了材料的比容量和倍率性能。
中图分类号:
王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 檀杰, 方道来. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物负极材料制备与储锂性能研究[J]. 化工学报, 2022, 73(12): 5625-5637.
Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials[J]. CIESC Journal, 2022, 73(12): 5625-5637.
图2 样品K1的HRTEM图(a),选区电子衍射图(b),不同放大倍数SEM图[(c),(d)],元素EDS图(e)
Fig.2 High-resolution TEM image (a), selected area electron diffraction (SAED) pattern (b), SEM images at different magnifications [(c),(d)] and EDS mapping images (e) of K1 sample
样品 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 平均孔径/nm | 最可几孔径/nm |
---|---|---|---|---|
K0 | 26.31 | 0.14 | 21.45 | 2.77 |
K0.5 | 38.69 | 0.18 | 18.83 | 2.78 |
K1 | 22.28 | 0.08 | 14.17 | 3.06 |
K1.5 | 42.35 | 0.14 | 13.39 | 2.58 |
表1 样品的BET比表面积、孔体积、平均孔径和最可几孔径
Table 1 BET surface area, pore volume, average pore size and the most probable pore size of the samples
样品 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 平均孔径/nm | 最可几孔径/nm |
---|---|---|---|---|
K0 | 26.31 | 0.14 | 21.45 | 2.77 |
K0.5 | 38.69 | 0.18 | 18.83 | 2.78 |
K1 | 22.28 | 0.08 | 14.17 | 3.06 |
K1.5 | 42.35 | 0.14 | 13.39 | 2.58 |
图5 样品的XPS全谱图(a),各元素精细谱图[(b)~(h)],拉曼光谱(i),四探针电导率(j)
Fig.5 XPS survey spectra (a), high-resolution XPS spectrum of all elements [(b)—(h)] and Raman spectra (i) and four-probes conductivity (j) of the samples
图6 各电极在不同电流密度下的循环性能[(a),(c)]和阶梯倍率性能(b);K1电极的循环伏安图(d)和容量电压曲线(e)
Fig.6 Cycling performance at different current density [(a), (c)] and stepped rate capability (b) of the electrodes; CV curves (d) and charge-discharge profiles (e) of K1 electrode
图7 K1电极循环前(a)和150次后(b)SEM图,循环150次后HRTEM图(c),循环150次前后XRD谱图(d)
Fig.7 SEM images before cycling (a) and after 150 cycles (b), HRTEM image after 150 cycles (c) and XRD patterns before cycling and after 150 cycles (d) of K1 electrode
Samples | Rs/Ω | Rct/Ω | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
K0 | 6.7 | 4.2 | 284 | 156 | 32.1 | 29.0 |
K0.5 | 4.1 | 5.4 | 246 | 125 | 13.2 | 86.3 |
K1 | 5.3 | 4.8 | 228 | 102 | 38.5 | 257.3 |
K1.5 | 7.4 | 5.5 | 265 | 134 | 17.0 | 45.4 |
表2 电极循环前和循环150次后的等效电路图参数
Table 2 Parameters of equivalent circuit diagrams of the electrodes before and after 150 cycles
Samples | Rs/Ω | Rct/Ω | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
K0 | 6.7 | 4.2 | 284 | 156 | 32.1 | 29.0 |
K0.5 | 4.1 | 5.4 | 246 | 125 | 13.2 | 86.3 |
K1 | 5.3 | 4.8 | 228 | 102 | 38.5 | 257.3 |
K1.5 | 7.4 | 5.5 | 265 | 134 | 17.0 | 45.4 |
图9 K1电极在不同扫速下的CV曲线(a),lgip-lgv关系(b),0.1 mV·s-1扫速下的赝电容(阴影区域)贡献(c);各电极在不同扫速下的赝电容贡献(d)
Fig.9 CV curves at different scan rates (a), lgip-lgv relation (b) and pseudocapacitive (shaded region) contribution at 0.1 mV·s-1 scan rate (c) of K1 electrode; pseudocapacitive contribution at different scan rates of the electrodes (d)
1 | 刘祥哲. 锂离子电池层状复合正极材料的制备与改性[D]. 济南: 济南大学, 2011. |
Liu X Z. Synthesis and modification of layered compound cathode material for lithium-ion batteries[D]. Jinan: University of Jinan, 2011. | |
2 | 何欢. 钴、铁基金属氧化物结构调控及其储锂性能研究[D]. 武汉: 华中科技大学, 2016. |
He H. Structure controlling of cobalt/iron-based oxides and lithium storage performance research[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
3 | Chen H, Qiu N, Wu B Z, et al. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries[J]. RSC Advances, 2020, 10(16): 9736-9744. |
4 | Duan C Q, Tian K H, Li X L, et al. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries[J]. Ceramics International, 2021, 47(22): 32025-32032. |
5 | 麦永津. 过渡金属氧化物锂离子电池负极材料纳米复合化改性研究[D]. 杭州: 浙江大学, 2012. |
Mai Y J. Improved electrochemical performance of transition metal oxide nanocomposites as anode materials for lithium ion batteries[D]. Hangzhou: Zhejiang University, 2012. | |
6 | 姚煜. 纳米结构氧化物锂离子电池负极材料研究[D]. 上海: 复旦大学, 2012. |
Yao Y. Nanostructured oxide lithium-ion battery anode materials research[D]. Shanghai: Fudan University, 2012. | |
7 | Song J, Lu X M, Tian Q H, et al. Dual-stable engineering enables high-performance Zn2SnO4-based lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2022, 910: 164924. |
8 | Yuan D, Adekoya D, Dou Y H, et al. Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 62: 281-288. |
9 | Cao Z Z, Liu C H, Huang Y X, et al. Oxygen-vacancy-rich NiCo2O4 nanoneedles electrode with poor crystallinity for high energy density all-solid-state symmetric supercapacitors[J]. Journal of Power Sources, 2020, 449: 227571. |
10 | Wang X L, Liu J, Hu Y F, et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries[J]. Science China Materials, 2022, 65(6): 1421-1430. |
11 | Anh L T, Rai A K, Thi T V, et al. Enhanced electrochemical performance of novel K-doped Co3O4 as the anode material for secondary lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(19): 6966-6975. |
12 | Wang J, Zhao H L, Yang Q, et al. Electrochemical characteristics of Li4- x Cu x Ti5O12 used as anode material for lithium-ion batteries[J]. Ionics, 2013, 19(3): 415-419. |
13 | Zheng Y, Wu X, Lan X X, et al. A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries[J]. Processes, 2021, 10(1): 49. |
14 | Bérardan D, Franger S, Meena A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541. |
15 | Yan J H, Wang D, Zhang X Y, et al. A high-entropy perovskite titanate lithium-ion battery anode[J]. Journal of Materials Science, 2020, 55(16): 6942-6951. |
16 | 李星, 瞿美臻, 于作龙. 锂离子电池负极材料Li4- x K x Ti5O12结构和电化学性能[J]. 无机化学学报, 2010, 26(2): 233-239. |
Li X, Qu M Z, Yu Z L. Structural and electrochemical characteristics of Li4- x K x Ti5O12 as anode material for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(2): 233-239. | |
17 | Qiu N, Chen H, Yang Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance[J]. Journal of Alloys and Compounds, 2019, 777: 767-774. |
18 | Nguyen T X, Tsai C C, Patra J, et al. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 430: 132658. |
19 | Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6: 8485. |
20 | Sarkar A, Wang Q S, Schiele A, et al. High-entropy oxides: fundamental aspects and electrochemical properties[J]. Advanced Materials, 2019, 31(26): 1806236. |
21 | Nguyen T X, Patra J, Chang J K, et al. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance[J]. Journal of Materials Chemistry A, 2020, 8(36): 18963-18973. |
22 | Xiao B, Wu G, Wang T D, et al. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries[J]. Nano Energy, 2022, 95: 106962. |
23 | Wang D, Jiang S D, Duan C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance[J]. Journal of Alloys and Compounds, 2020, 844: 156158. |
24 | Xiang H Z, Xie H X, Chen Y X, et al. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4- δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries[J]. Journal of Materials Science, 2021, 56(13): 8127-8142. |
25 | Mao A Q, Xiang H Z, Zhang Z G, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder[J]. Journal of Magnetism and Magnetic Materials, 2019, 484: 245-252. |
26 | 项厚政, 谢鸿翔, 李文超, 等. 尖晶石型高熵氧化物的制备和电化学性能[J]. 高等学校化学学报, 2020, 41(8): 1801-1809. |
Xiang H Z, Xie H X, Li W C, et al. Synthesis and electrochemical performance of spinel-type high-entropy oxides[J]. Chemical Journal of Chinese Universities, 2020, 41(8): 1801-1809. | |
27 | Bérardan D, Franger S, Dragoe D, et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2016, 10(4): 328-333. |
28 | Chen H, Qiu N, Wu B Z, et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties[J]. RSC Advances, 2019, 9(50): 28908-28915. |
29 | 肖雪春, 有俊达, 赵阳, 等. 基于溶液燃烧法制备多孔结构材料的实验设计[J]. 实验科学与技术, 2021, 19(1): 70-74. |
Xiao X C, You J D, Zhao Y, et al. Porous structural materials synthesized by one-step solution combustion method[J]. Experiment Science and Technology, 2021, 19(1): 70-74. | |
30 | 吉可明, 孟凡会, 李忠. 溶液燃烧法制备无机材料研究进展[J]. 现代化工, 2014, 34(5): 22-25, 27. |
Ji K M, Meng F H, Li Z. Recent advance in inorganic material prepared by solution combustion synthesis[J]. Modern Chemical Industry, 2014, 34(5): 22-25, 27. | |
31 | An Q Y, Zhang P F, Xiong F Y, et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries[J]. Nano Research, 2015, 8(2): 481-490. |
32 | Fang D L, Zhao Y C, Wang S S, et al. Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction[J]. Electrochimica Acta, 2020, 330: 135346. |
33 | Zou F, Hu X, Li Z, et al. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries[J]. Advanced Materials, 2014, 26(38): 6622-6628. |
34 | Zhang Y Y, Chen P, Wang Q Y, et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure[J]. Advanced Energy Materials, 2021, 11(31): 2101712. |
35 | Gu Y J, Li Y, Chen Y B, et al. Enhanced oxygen vacancies in nanostructured LiNi0.5Mn1.5O4- δ with a P4332 space group[J]. International Journal of Electrochemical Science, 2017, 12: 9523-9532. |
36 | Tang Z K, Xue Y F, Teobaldi G, et al. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horizons, 2020, 5(11): 1453-1466. |
37 | Cui Y, Xiao K F, Bedford N M, et al. Refilling nitrogen to oxygen vacancies in ultrafine tungsten oxide clusters for superior lithium storage[J]. Advanced Energy Materials, 2019, 9(37): 1902148. |
38 | Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1): 1-9. |
39 | Li Z Y, Zhang C K, Liu C F, et al. Enhanced electrochemical properties of Sn-doped V2O5 as a cathode material for lithium ion batteries[J]. Electrochimica Acta, 2016, 222: 1831-1838. |
40 | Sarkar A, Djenadic R, Usharani N J, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides[J]. Journal of the European Ceramic Society, 2017, 37(2): 747-754. |
41 | Wang J, Polleux J, Lim J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931. |
42 | 李延伟, 李世玉, 谢志平, 等. 电化学沉积制备V2O5薄膜电极的表面结构及储钠性能[J]. 化工学报, 2016, 67(11): 4771-4778. |
Li Y W, Li S Y, Xie Z P, et al. Surface morphology and sodium storage performance of V2O5 thin film electrode prepared by CTAB assisted electrodeposition[J]. CIESC Journal, 2016, 67(11): 4771-4778. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[15] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 540
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||