化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5598-5606.DOI: 10.11949/0438-1157.20210822
史玉婷1,2(),皇甫林2,李长明3,王月4,高士秋2,伞晓广1,韩振南1,余剑2(
)
收稿日期:
2021-06-21
修回日期:
2021-08-30
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
余剑
作者简介:
史玉婷(1995—),女,硕士研究生,基金资助:
Yuting SHI1,2(),Lin HUANGFU2,Changming LI3,Yue WANG4,Shiqiu GAO2,Xiaoguang SAN1,Zhennan HAN1,Jian YU2(
)
Received:
2021-06-21
Revised:
2021-08-30
Online:
2021-11-05
Published:
2021-11-12
Contact:
Jian YU
摘要:
为解决现有Mn基催化滤袋SO2中毒的问题,制备了基于V2O5-MoO3/TiO2的催化滤袋,用于在180~260℃范围内同时去除NOx和粉尘。实验结果表明,双层滤袋在气体过滤面速度为0.2 m/min时具有良好的脱硝活性和抗硫抗水性能。在纯氧玻璃窑炉中试中采用制备的双层催化滤袋进行了试验,烟气量为2000~3000 m3/h、SO2浓度在20~30 mg/m3范围内、水蒸气含量10%(体积分数)、NOx浓度为400~550 mg/m3,在170~210℃范围内NOx转化率可达到88.14%~95.06%,验证了催化滤袋的脱硝性能;连续运行1500 h后,活性出现5%左右的微弱衰减;在高硫烟气条件下(300~500 mg/m3)连续运行100 h发现催化滤袋失活,SEM-EDS和XPS表征证明催化剂失活是由于硫铵类物质在滤袋纤维表面沉积,部分活性位点被覆盖所致。
中图分类号:
史玉婷, 皇甫林, 李长明, 王月, 高士秋, 伞晓广, 韩振南, 余剑. V2O5-MoO3/TiO2催化滤袋的制备及中试应用[J]. 化工学报, 2021, 72(11): 5598-5606.
Yuting SHI, Lin HUANGFU, Changming LI, Yue WANG, Shiqiu GAO, Xiaoguang SAN, Zhennan HAN, Jian YU. Preparation and pilot-scale test of V2O5-MoO3/TiO2 catalytic filter bag[J]. CIESC Journal, 2021, 72(11): 5598-5606.
样品 | Content/%(mass) | ||||
---|---|---|---|---|---|
C | O | F | S | V | |
新鲜-内侧 | 17.26 | 6.81 | 57.94 | 0.49 | 4.43 |
1500 h-外侧 | 13.17 | 30.37 | 20.33 | 12.59 | 1.13 |
1500 h-内侧 | 15.22 | 18.34 | 42.17 | 2.64 | 4.34 |
失活-外侧 | 12.37 | 47.59 | 8.20 | 31.18 | 0.66 |
失活-内侧 | 16.96 | 15.86 | 43.72 | 7.60 | 1.69 |
表1 不同催化滤袋的EDS元素含量
Table 1 The percentage of EDS elements in different catalytic filter bags
样品 | Content/%(mass) | ||||
---|---|---|---|---|---|
C | O | F | S | V | |
新鲜-内侧 | 17.26 | 6.81 | 57.94 | 0.49 | 4.43 |
1500 h-外侧 | 13.17 | 30.37 | 20.33 | 12.59 | 1.13 |
1500 h-内侧 | 15.22 | 18.34 | 42.17 | 2.64 | 4.34 |
失活-外侧 | 12.37 | 47.59 | 8.20 | 31.18 | 0.66 |
失活-内侧 | 16.96 | 15.86 | 43.72 | 7.60 | 1.69 |
1 | 宁汝亮, 刘霄龙, 朱廷钰. 低温SCR脱硝催化剂研究进展 [J].过程工程学报, 2019, 19(2): 223-234. |
Ning R L, Liu X L, Zhu T Y. Research progress of low-temperature SCR denitration catalysts[J]. The Chinese Journal of Process Engineering, 2019, 19(2): 223-234. | |
2 | Li J H, Chang H Z, Ma L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review[J]. Catalysis Today, 2011, 175(1): 147-156. |
3 | Liu J X, Zhao Z, Xu C M, et al. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis[J]. Chinese Journal of Catalysis, 2019, 40(10): 1438-1487. |
4 | 刘芳琪, 于敦喜, 吴建群, 等. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051-4057. |
Liu F Q, Yu D X, Wu J Q, et al. Effect of SCR on particulate matter emissions from a coal-fired boiler[J]. CIESC Journal, 2018, 69(9): 4051-4057. | |
5 | Pio F. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A: General, 2001, 222(1/2): 221-236. |
6 | 王响, 薛友祥, 程之强, 等. 除尘脱硝一体化陶瓷膜材料的研究[J]. 现代技术陶瓷, 2019, 40(5): 345-353. |
Wang X, Xue Y X, Cheng Z Q, et al. On the ceramic membrane material for SCR and dust removal[J]. Advanced Ceramics, 2019, 40(5): 345-353. | |
7 | Qiu Y, Liu B, Du J, et al. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR[J]. Chemical Engineering Journal, 2016, 294: 264-272. |
8 | Kwon B C, Kang D, Lee S W, et al. Synthesis of macro-porous de-NOx catalysts for poly-tetra-fluoro-ethylene membrane bag filter[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(8): 4537-4543. |
9 | Li W M, Liu H D, Chen Y F. Fabrication of MnOx-CeO2-based catalytic filters and their application in low-temperature selective catalytic reduction of NO with NH3[J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12657-12665. |
10 | 张先龙, 彭真, 刘鹏, 等. 基于PPS的锰基催化脱硝-除尘功能一体化滤料的制备及其低温SCR脱硝[J]. 功能材料, 2015, 46(S2): 160-164. |
Zhang X L, Peng Z, Liu P, et al. Preparation of PPS filter loaded with MnOx for dust elimination and de-NO by low-temperature SCR[J]. Journal of Functional Materials, 2015, 46(S2): 160-164. | |
11 | Liu J X, Wang L, Okejiri F, et al. Deep understanding of strong metal interface confinement: a journey of Pd/FeOx catalysts[J]. ACS Catalysis, 2020, 10(15): 8950-8959. |
12 | 陈雪红, 郑玉婴, 付彬彬, 等. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2017, 45(12): 1514-1521. |
Chen X H, Zheng Y Y, Fu B B, et al. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1514-1521. | |
13 | Yang B, Shen Y S, Su Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141. |
14 | Park Y O, Lee K W, Rhee Y W. Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(1): 36-39. |
15 | Gao F Y, Tang X L, Yi H H, et al. A review on selective catalytic reduction of NOx by NH3 over Mn-based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations[J]. Catalysts, 2017, 7(7): 199. |
16 | Liu C, Shi J W, Gao C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
17 | 郭凤, 余剑, Tuyet-Suong Tran, 等. 溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J]. 化工学报, 2017, 68(10): 3747-3754. |
Guo F, Yu J, Tuyet-Suong T, et al. In situ preparation of mesoporous V2O5-WO3/TiO2 catalyst by sol-gel method and its performance for NH3-SCR reaction[J]. CIESC Journal, 2017, 68(10): 3747-3754. | |
18 | Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 de-NOx catalysts[J]. Journal of Catalysis, 1995, 155(1): 117-130. |
19 | Gan L N, Guo F, Yu J, et al. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors[J]. Catalysts, 2016, 6(2): 25. |
20 | Abubakar A, Li C M, Huangfu L, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing V2O5-MoO3/TiO2[J]. Korean Journal of Chemical Engineering, 2020, 37(4): 633-640. |
21 | 单良, 尹荣强, 王慧, 等. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021,72(9): 4892-4899. |
Shan L, Yin R Q, Wang H, et al. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NOx synergistic removal performance[J]. CIESC Journal, 2021,72(9): 4892-4899. | |
22 | Yu J, Li C M, Guo F, et al. The pilot demonstration of a honeycomb catalyst for the DeNOx of low-temperature flue gas from an industrial coking plant[J]. Fuel, 2018, 219: 37-49. |
23 | Ma Z R, Wu X D, Feng Y, et al. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Progress in Natural Science: Materials International, 2015, 25(4): 342-352. |
24 | Jeon S W, Song I, Lee H, et al. Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH3: effect of promoters[J]. Chemosphere, 2021, 275: 130105. |
25 | Han L, Cai S, Gao M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
26 | Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 62(1/2): 104-114. |
27 | Amiridis M D, Wachs I E, Deo G, et al. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: influence of vanadia loading, H2O, and SO2[J]. Journal of Catalysis, 1996, 161(1): 247-253. |
28 | Turco M, Lisi L, Pirone R, et al. Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V2O5/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 1994, 3(2/3): 133-149. |
29 | Kwon D W, Park K H, Hong S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. |
30 | 尹子骏, 苏胜, 卿梦霞, 等. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596-2603. |
Yin Z J, Su S, Qing M X, et al. Study on SO3 formation characteristics of a typical vanadium titanium SCR catalyst[J]. CIESC Journal, 2021, 72(5): 2596-2603. | |
31 | Guo X Y, Bartholomew C, Hecker W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 30-40. |
32 | 刘亭, 沈伯雄, 朱国营, 等. 抗水、抗SO2的低温选择性催化还原催化剂研究进展[J]. 环境污染与防治, 2008, 30(11): 80-83. |
Liu T, Shen B X, Zhu G Y, et al. A review of research in H2O and SO2 resistant low-temperature SCR catalysts[J]. Environmental Pollution & Control, 2008, 30(11): 80-83. | |
33 | Cornaglia L M, Lombardo E A. XPS studies of the surface oxidation states on vanadium-phosphorus-oxygen (VPO) equilibrated catalysts[J]. Applied Catalysis A: General, 1995, 127(1/2): 125-138. |
34 | Romano E J, Schulz K H. A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J]. Applied Surface Science, 2005, 246(1/2/3): 262-270. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707. |
[3] | 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34:Si含量的影响[J]. 化工学报, 2021, 72(5): 2578-2585. |
[4] | 刘涛, 张书廷. Ba、Co共掺MnOx复合氧化物低温选择性催化还原NO研究[J]. 化工学报, 2020, 71(7): 3106-3113. |
[5] | 王晨,陈泽翔,王建强,沈美庆,王军. 基于NH3-SCR反应铜基小孔分子筛催化剂Na中毒对比研究[J]. 化工学报, 2020, 71(12): 5551-5560. |
[6] | 张霄玲,鲍佳宁,李运甲,皇甫林,李文松,高士秋,许光文,李长明,余剑. 工业MnOx颗粒催化剂的制备及其低温脱硝应用研究[J]. 化工学报, 2020, 71(11): 5169-5177. |
[7] | 汤常金,孙敬方,董林. 超低温(< 150℃)SCR脱硝技术研究进展[J]. 化工学报, 2020, 71(11): 4873-4884. |
[8] | 陈潇雪, 宋敏, 孟凡跃, 卫月星. Fe x MnCe1-AC低温SCR催化剂SO2中毒机理研究[J]. 化工学报, 2019, 70(8): 3000-3010. |
[9] | 李萍, 李长明, 段正康, 高士秋, 许光文, 余剑. 低温烟气脱硝催化剂适用条件与动力学[J]. 化工学报, 2019, 70(8): 2981-2990. |
[10] | 张涛, 刘琪英, 张彩红, 张琦, 马隆龙. Ni/La2O2CO3催化剂对山梨醇氢解产物的选择性调控[J]. 化工学报, 2017, 68(6): 2359-2367. |
[11] | 戚春萍, 武文粉, 王晨晔, 李会泉. 燃煤电厂废旧SCR脱硝催化剂中TiO2载体的回收与再利用[J]. 化工学报, 2017, 68(11): 4239-4248. |
[12] | 石建伟, 吴威, 杨荟楠, 苏明旭, 蔡小舒. 基于激光光谱法的尿素水溶液液膜多参数测量[J]. 化工学报, 2017, 68(1): 79-86. |
[13] | 刘建华, 杨晓博, 张琛, 吴凡, 李忠, 夏启斌. Fe2O3对V2O5-WO3/TiO2催化剂表面性质及其性能的影响[J]. 化工学报, 2016, 67(4): 1287-1293. |
[14] | 李倩, 谷华春, 辛颖, 李壮壮, 张昭良. V2O5-WO3/TiO2脱硝催化剂机械强度和孔隙率的响应曲面模型[J]. 化工学报, 2015, 66(9): 3496-3503. |
[15] | 李洋1,2,陈敏东1,薛志钢2,支国瑞2,马京华2,刘妍2,高炜2. 燃煤电厂协同脱汞研究进展及强化措施[J]. 化工进展, 2014, 33(08): 2187-2191. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 785
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||