化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3000-3010.DOI: 10.11949/0438-1157.20190318
收稿日期:
2019-04-01
修回日期:
2019-06-20
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
宋敏
作者简介:
陈潇雪(1994—),女,硕士研究生,基金资助:
Xiaoxue CHEN(),Min SONG(),Fanyue MENG,Yuexing WEI
Received:
2019-04-01
Revised:
2019-06-20
Online:
2019-08-05
Published:
2019-08-05
Contact:
Min SONG
摘要:
以活性炭为载体,通过超声辅助浸渍法制备了一系列Fe x MnCe1-AC催化剂,考察了该系列催化剂的低温NH3-SCR脱硝活性,确立了活性最佳的催化剂,并探究了SO2对其脱硝性能的影响。结果表明,Fe0.1MnCe1-AC催化剂低温脱硝活性最高,在120~220℃范围内NO的转化率均在90%以上(无SO2)。此外,在180℃、SO2浓度为429 mg/m3时,该催化剂仍能保持77%左右的脱硝率。通过BET、XRD、XPS、H2-TPR、NH3-TPD、FT-IR、TGA等表征手段对催化剂的SO2中毒机理进行了分析。研究发现,SO2能与NH3及催化剂中金属组分生成硫酸铵盐((NH4)2SO4、(NH4)2SO3)、MnSO4等物质,改变了原催化剂孔道结构并减少了催化剂表面Br?nsted和Lewis酸性位点,抑制了催化剂吸附NH3的能力。更多地,SO2促使催化剂中Mn4+、Ce3+、Fe3+和Fe3+—OH-基团数量下降,表面可还原物质减少,从而降低了催化剂的脱硝活性。
中图分类号:
陈潇雪, 宋敏, 孟凡跃, 卫月星. Fe x MnCe1-AC低温SCR催化剂SO2中毒机理研究[J]. 化工学报, 2019, 70(8): 3000-3010.
Xiaoxue CHEN, Min SONG, Fanyue MENG, Yuexing WEI. Mechanism study on SO2 poisoning of Fe x MnCe1-AC catalyst for low-temperature SCR[J]. CIESC Journal, 2019, 70(8): 3000-3010.
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 微孔孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|---|
Fe0.1MnCe1-AC | 766.4 | 0.7641 | 0.1478 | 3.988 |
180℃-429 mg/m3SO2 | 632.5 | 0.6636 | 0.1116 | 4.197 |
120℃-429 mg/m3SO2 | 491.1 | 0.4985 | 0.0934 | 4.060 |
活性炭 | 953.5 | 1.137 | 0.2017 | 4.179 |
表1 催化剂中毒前后BET比表面积和孔结构特征
Table 1 BET specific surface area and pore characterization of fresh and poisoned catalyst
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 微孔孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|---|
Fe0.1MnCe1-AC | 766.4 | 0.7641 | 0.1478 | 3.988 |
180℃-429 mg/m3SO2 | 632.5 | 0.6636 | 0.1116 | 4.197 |
120℃-429 mg/m3SO2 | 491.1 | 0.4985 | 0.0934 | 4.060 |
活性炭 | 953.5 | 1.137 | 0.2017 | 4.179 |
催化剂 | Mn2+ | Mn3+ | Mn4+ | Ce3+ | Ce4+ |
---|---|---|---|---|---|
Fe0.1MnCe1-AC | 12.9% (641.2 eV) | 41% (642.5 eV) | 46.1% (644.1 eV) | 53.6% | 46.4% |
180℃-429 mg/m3 SO2 | 7.4% (641.2 eV) | 48.5% (642 eV) | 44.1% (644.2 eV) | 38.4% | 61.6% |
120℃-429 mg/m3 SO2 | 23.5% (641.2 eV) | 48.1% (642.4 eV) | 28.3% (644.1 eV) | 27.7% | 72.3% |
表2 催化剂表面相关原子价态分布
Table 2 Percentage of different valence states of relative catalytic atom
催化剂 | Mn2+ | Mn3+ | Mn4+ | Ce3+ | Ce4+ |
---|---|---|---|---|---|
Fe0.1MnCe1-AC | 12.9% (641.2 eV) | 41% (642.5 eV) | 46.1% (644.1 eV) | 53.6% | 46.4% |
180℃-429 mg/m3 SO2 | 7.4% (641.2 eV) | 48.5% (642 eV) | 44.1% (644.2 eV) | 38.4% | 61.6% |
120℃-429 mg/m3 SO2 | 23.5% (641.2 eV) | 48.1% (642.4 eV) | 28.3% (644.1 eV) | 27.7% | 72.3% |
1 | Fang N J , Guo J X , Shu S , et al . Effect of calcination temperature on low-temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 277-288. |
2 | Roy S , Hegde M S , Madras G . Catalysis for NO x abatement[J]. Applied Energy, 2009, 86(11): 2283-2297. |
3 | Peng Y , Li J , Si W , et al . Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study[J]. Environmental Science & Technology, 2014, 48(23): 13895-13900. |
4 | Chen L , Li J , Ge M . The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3 [J]. Chemical Engineering Journal, 2011, 170(2/3): 531-537. |
5 | Gao F , Tang X , Yi H , et al . Improvement of activity, selectivity and H2O & SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NO x [J]. Applied Surface Science, 2019, 466: 411-424. |
6 | Zhao L , Li C , Zhang X , et al . A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catalysis Science & Technology 2015, 5(7): 3459-3472. |
7 | Nie Y , Yan Q , Chen S , et al . CuTi LDH derived NH3-SCR catalysts with highly dispersed CuO active phase and improved SO2 resistance[J]. Catalysis Communications, 2017, 97: 47-50. |
8 | Nedyalkova R , Kamasamudram K , Currier N W , et al . Experimental evidence of the mechanism behind NH3 overconsumption during SCR over Fe-zeolites[J]. Journal of Catalysis, 2013, 299: 101-108. |
9 | Putluru S S R , Schill L , Jensen A D , et al . Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2015, 165: 628-635. |
10 | Kwon D W , Nam K B , Hong S C . The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2015, 166/167: 37-44. |
11 | Zhuang K , Zhang Y P , Huang T J , et al . Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1356-1364. |
12 | Leng X , Zhang Z , Li Y , et al . Excellent low temperature NH3-SCR activity over Mn a Ce0.3TiO x (a = 0.1—0.3) oxides: influence of Mn addition[J]. Fuel Processing Technology, 2018, 181: 33-43. |
13 | Wang L , Huang B , Su Y , et al . Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: catalytic activity and characterization[J]. Chemical Engineering Journal, 2012, 192: 232-241. |
14 | Li J H , Chang H Z , Ma L , et al . Low-temperature selective catalytic reduction of NO x with NH3 over metal oxide and zeolite catalysts—a review[J].Catalysis Today, 2011, 175: 147-156. |
15 | Jin R , Liu Y , Wang Y , et al . The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Applied Catalysis B: Environmental, 2014, 148/149: 582-588. |
16 | Yan D J , Ya Y U , Huang X M , et al . Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry & Technology, 2016, 44(2): 232-238. |
17 | France L J , Yang Q , Li W , et al . Ceria modified FeMnO x —enhanced performance and sulphur resistance for low-temperature SCR of NO x [J]. Applied Catalysis B: Environmental, 2017, 206: 203-215. |
18 | Cao F , Su S , Xiang J , et al . The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Fuel, 2015, 139: 232-239. |
19 | 乔南利, 杨忆新, 刘清龙, 等 . 载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响[J]. 燃料化学学报, 2018, 46(6): 733-742. |
Qiao N L , Yang Y X , Liu Q L , et al . Influence of different supports on the physicochemical properties and denitration performance of the supported MnCe-based catalysts for NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 733-742. | |
20 | Marban G , Valdessolis T , Fuertes A B . Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4-role of surface NH3 species: SCR mechanism[J]. Physical Chemistry Chemical Physics, 2004, 6(2): 453-464. |
21 | 周愉千, 刘超, 宋鹏, 等 . CeO x /AC催化剂NH3选择性催化还原NO[J]. 环境工程学报, 2012, 6(8): 2720-2724. |
Zhou Y Q , Liu C , Song P , et al . CeO x /AC catalysts for selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Environmental Engineering, 2012, 6(8): 2720-2724. | |
22 | Jin R , Liu Y , Wu Z , et al . Low-temperature selective catalytic reduction of NO with NH3 over MnCe oxides supported on TiO2 and Al2O3: a comparative study[J]. Chemosphere, 2010, 78(9): 1160-1166. |
23 | Peña D A , Uphade B S , Smirniotis P G . TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3 (I): Evaluation and characterization of first row transition metals[J]. Journal of Catalysis, 2004, 221(2): 421-431. |
24 | Xu L , Li X S , Crocker M , et al . A study of the mechanism of low-temperature SCR of NO with NH3 on MnO x /CeO2 [J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 82-90. |
25 | Zhang D , Zhang L , Shi L , et al . In situ supported MnO x -CeO x on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3 [J]. Nanoscale, 2013, 5(3): 1127. |
26 | 解智博, 宋艳军, 梁金生, 等 . 锰基催化剂低温选择催化还原处理NO x 的研究现状与展望[J]. 材料导报, 2017, 31(11): 38-43. |
Xie Z B , Song Y J , Liang J S , et al . Research status and prospects of low temperature selective catalytic reduction of NO x by MnO x -based catalysts[J]. Materials Review, 2017, 31(11): 38-43. | |
27 | Li W , Zhang C , Li X , et al . Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO with NH3: evaluation and characterization[J]. Chinese Journal of Catalysis, 2018, 39(10): 1653-1663. |
28 | Liu Z , Wang A , Wang X , et al . Ir-C xerogels synthesized by sol-gel method for NO reduction[J]. Catalysis Today, 2008, 137(2/3/4): 162-166. |
29 | Lu X , Song C , Jia S , et al . Low-temperature selective catalytic reduction of NO x with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chemical Engineering Journal, 2015, 260: 776-784. |
30 | Zhang X M , Deng Y Q , Tian P , et al . Dynamic active sites over binary oxide catalysts: in situ/operando spectroscopic study of low-temperature CO oxidation over MnO x -CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2016, 191: 179-191. |
31 | Miller D D , Chuang S S C . In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 613-621. |
32 | Xu W , He H , Yu Y . Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3 [J]. Journal of Physical Chemistry C, 2009, 113(11): 4426-4432. |
33 | Qiao J , Wang N , Wang Z , et al . Porous bimetallic Mn2Co1O x catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NO x with NH3 [J]. Catalysis Communications, 2015, 72: 111-115. |
34 | Kapteijn F , Singoredjo L , Andreini A , et al . Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Cheminform, 1994, 3(2/3): 173-189. |
35 | Shen B , Liu T , Zhao N , et al . Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454. |
36 | Mukundan D , Oliver K , Martin E , et al . Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR[J]. Catalysis Today, 2007, 119(1/2/3/4): 137-144. |
37 | Zhou X , Huang X , Xie A , et al . V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NO x with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 326: 1074-1085. |
38 | Lin X , Li S , He H , et al . Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2017, 223: 91-102. |
39 | Li Y , Wan Y , Li Y P , et al . Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5224-5233. |
40 | Raj A M E , Victoria S G , Jothy V B , et al . XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique[J]. Applied Surface Science, 2010, 256(9): 2920-2926. |
41 | Yang J , Su Z , Ren S , et al . Low-temperature SCR of NO with NH3 over biomass char supported highly dispersed Mn-Ce mixed oxides[J]. Journal of the Energy Institute, 2019: 92(4): 883-891. |
42 | Shen B X , Liu T . Deactivation of MnO x -CeO x /ACF catalysts for low-temperature NH3-SCR in the presence of SO2 [J]. Acta Physico-Chimica Sinica, 2010, 26(11): 3009-3016. |
43 | Shi Y , Pan H , Zhang Y , et al . Promotion of MgO addition on SO2 tolerance of Ag/Al2O3 for selective catalytic reduction of NO x with methane at low temperature[J]. Catalysis Communications, 2008, 9(5): 796-800. |
44 | Zhu Z , Niu H , Liu Z , et al . Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. Journal of Catalysis, 2000, 195(2): 268-278. |
[1] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[8] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||