化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5551-5560.DOI: 10.11949/0438-1157.20200408
王晨1,2(),陈泽翔1(),王建强1,沈美庆1,3,王军1()
收稿日期:
2020-04-17
修回日期:
2020-07-12
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
王军
作者简介:
王晨(1987—),男,博士,讲师,基金资助:
WANG Chen1,2(),CHEN Zexiang1(),WANG Jianqiang1,SHEN Meiqing1,3,WANG Jun1()
Received:
2020-04-17
Revised:
2020-07-12
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Jun
摘要:
以浸渍法模拟碱金属中毒NH3-SCR催化剂过程,制备不同Na含量(质量分数)的铜基小孔分子筛Cu/SSZ-13和Cu/SAPO-34,对比研究了二者的碱金属中毒机理。结果表明,外引Na离子均可严重影响两种催化剂的NH3-SCR催化活性,造成催化剂的晶相结构坍塌,酸性量减少,活性物种减少。不同的是,Na引入量较低(<1.82%)时,Cu/SAPO-34比Cu/SSZ-13具有更强的Na离子耐受性,而当Na含量高于3.48%时,Cu/SAPO-34几乎完全丧失NH3-SCR催化活性。通过催化剂的结构表征(BET、XRD和SEM)和酸性位表征(DRIFTS、NH3-TPD和H2-TPR),研究表明随着Na中毒程度的加深,Cu/SSZ-13的结构破坏是渐变式的,而Cu/SAPO-34的结构破坏是突变式的;Na中毒的机理研究表明,酸性位的减少是Cu/SSZ-13的SCR活性下降的主导原因,结构坍塌是Cu/SAPO-34的SCR活性下降的主导原因。
中图分类号:
王晨,陈泽翔,王建强,沈美庆,王军. 基于NH3-SCR反应铜基小孔分子筛催化剂Na中毒对比研究[J]. 化工学报, 2020, 71(12): 5551-5560.
WANG Chen,CHEN Zexiang,WANG Jianqiang,SHEN Meiqing,WANG Jun. Comparison study of Na poisoning effect on copper-based chabazite micropore catalysts for NH3-SCR reaction[J]. CIESC Journal, 2020, 71(12): 5551-5560.
样品 | 比表面积①/(m2/g) | 下降率②/% | Cu含量/ %(质量) |
---|---|---|---|
Cu-SZ before aging | 806 | — | — |
Cu-SZ | 792 | — | 2.07 |
1.82Na-SZ | 526 | 34 | 1.99 |
3.69 Na-SZ | 363 | 54 | 2.00 |
6.04 Na-SZ | 107 | 86 | 1.81 |
7.27 Na-SZ | 4 | 99 | 1.68 |
Cu-SP before aging | 795 | — | — |
Cu-SP | 790 | — | 1.40 |
1.82 Na-SP | 633 | 20 | 1.32 |
3.48 Na-SP | 96 | 88 | 1.42 |
6.33 Na-SP | 47 | 94 | 1.40 |
7.75 Na-SP | 4 | 99 | 1.36 |
表1 不同Na负载量的Cu/SSZ-13催化剂和Cu/SAPO-34催化剂的BET比表面积
Table 1 BET specific surface areas of Cu/SSZ-13 and Cu/SAPO-34 with different Na contents
样品 | 比表面积①/(m2/g) | 下降率②/% | Cu含量/ %(质量) |
---|---|---|---|
Cu-SZ before aging | 806 | — | — |
Cu-SZ | 792 | — | 2.07 |
1.82Na-SZ | 526 | 34 | 1.99 |
3.69 Na-SZ | 363 | 54 | 2.00 |
6.04 Na-SZ | 107 | 86 | 1.81 |
7.27 Na-SZ | 4 | 99 | 1.68 |
Cu-SP before aging | 795 | — | — |
Cu-SP | 790 | — | 1.40 |
1.82 Na-SP | 633 | 20 | 1.32 |
3.48 Na-SP | 96 | 88 | 1.42 |
6.33 Na-SP | 47 | 94 | 1.40 |
7.75 Na-SP | 4 | 99 | 1.36 |
样品 | 酸总量/μmol | 样品 | 酸总量/μmol |
---|---|---|---|
Cu-SZ | 65.9 | Cu-SP | 66.1 |
1.82Na-SZ | 24.1 | 1.82Na-SP | 49.0 |
3.69Na-SZ | 13.8 | 3.48Na-SP | 5.6 |
6.04Na-SZ | 7.7 | 6.33Na-SP | 1.5 |
7.27Na-SZ | 1.4 | 7.75Na-SP | 0.7 |
表2 不同Na含量的Cu/SSZ-13和Cu/SAPO-34催化剂的酸总量(基于NH3-TPD积分结果)
Table 2 Acidity quantification of Cu/SSZ-13 and Cu/SAPO-34 catalysts based on NH3-TPD results
样品 | 酸总量/μmol | 样品 | 酸总量/μmol |
---|---|---|---|
Cu-SZ | 65.9 | Cu-SP | 66.1 |
1.82Na-SZ | 24.1 | 1.82Na-SP | 49.0 |
3.69Na-SZ | 13.8 | 3.48Na-SP | 5.6 |
6.04Na-SZ | 7.7 | 6.33Na-SP | 1.5 |
7.27Na-SZ | 1.4 | 7.75Na-SP | 0.7 |
样品 | Cu含量/% | |||
---|---|---|---|---|
8MR Cu2+ | 6MR Cu2+ | CuO | CuAlO2 | |
Cu-SZ | 35 | 61 | 4 | — |
1.82Na-SZ | 18 | 76 | 6 | — |
3.69Na-SZ | 14 | 46 | 4 | 36 |
Cu-SP | 46 | 43 | 11 | — |
1.82Na-SP | 35 | 50 | 15 | — |
表3 Cu物种的积分定量结果
Table 3 Quantification results of Cu containing species based on H2-TPR
样品 | Cu含量/% | |||
---|---|---|---|---|
8MR Cu2+ | 6MR Cu2+ | CuO | CuAlO2 | |
Cu-SZ | 35 | 61 | 4 | — |
1.82Na-SZ | 18 | 76 | 6 | — |
3.69Na-SZ | 14 | 46 | 4 | 36 |
Cu-SP | 46 | 43 | 11 | — |
1.82Na-SP | 35 | 50 | 15 | — |
1 | 杨光. 世界上第一辆汽油车奔弛1号[J]. 时代汽车, 2013, (12): 92-93. |
Yang G. The first car in the world: Benz patent motor[J]. Auto Time, 2013, (12): 92-93. | |
2 | 李莹莹. 京津冀机动车污染物排放总量测算及减排防控策略研究[D]. 天津: 天津理工大学, 2015. |
Li Y Y. Research on total amount of vehicular emission in Beijing-Tianjin-Hebei (BTH) region and its abatement control strategy[D]. Tianjin: Tianjin University of Technology, 2015. | |
3 | 王小霞. 道路机动车尾气污染物排放量的预测与控制措施研究[D]. 西安: 长安大学, 2012. |
Wang X X. Study on prediction and control measures of motor vehicle pollutant emission[D].Xian: Changan University, 2012. | |
4 | 李玉辉.机动车污染及防治对策[J]. 环境科学与技术, 2000, 2: 37-38. |
Li Y H. Motor vehicle pollution and its prevention and control countermeasures[J]. Environmental Science and Technology, 2000, 2: 37-38. | |
5 | 中华人民共和国生态环境部. 中国移动源环境管理年报(2019)[R].北京: 中华人民共和国生态环境部, 2019. |
Ministry of Ecology and Environment of the Peoples Republic of China. China Mobile Source Environmental Management Annual Report(2019)[R]. Beijing: Ministry of Ecology and Environment of the Peoples Republic of China, 2019. | |
6 | Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review [J]. Applied Catalysis B: Environmental, 1998, 18(1): 1-36. |
7 | 苏岭, 周龙保, 蒋德明, 等. 柴油机排气后处理技术的现代进展[J]. 内燃机, 2003, (1): 1-8. |
Su L, Zhou L B, Jiang D M, et al. Recent development of aftertreatment of diesel emissions[J]. Internal Combustion Engines, 2003, (1): 1-8. | |
8 | Forzatti P, Lietti L, Nova I, et al. Diesel NOx aftertreatment catalytic technologies: analogies in LNT and SCR catalytic chemistry[J]. Catalysis Today, 2010, 151(3/4): 202-211. |
9 | Girard J, Cavataio G, Snow R, et al. Combined Fe-Cu SCR systems with optimized ammonia to NOx ratio for diesel NOx control[J]. SAE International Journal of Fuels and Lubricants, 2009, 1(1): 603-610. |
10 | Arous W, Tounsi H, Djemel S, et al. Selective catalytic reduction of nitric oxide with ammonia on copper (Ⅱ) ion-exchanged offretite[J]. Catalysis Communications, 2005, 6(4): 281-285. |
11 | Sjvall H, Olsson L, Fridell E, et al. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5: the effect of changing the gas composition[J]. Applied Catalysis B: Environmental, 2006, 64(3/4): 180-188. |
12 | Delahay G, Kieger S, Tanchoux N, et al. Kinetics of the selective catalytic reduction of NO by NH3 on a Cu-faujasite catalyst[J]. Applied Catalysis B: Environmental, 2004, 52(4): 251-257. |
13 | Baik J H, Yim S D, Nam I, et al. Modeling of monolith reactor washcoated with CuZSM5 catalyst for removing NO from diesel engine by urea[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5258-5267. |
14 | 韩斌, 雷志刚, 刘茜, 等. 碱金属化合物对V2O5/AC催化剂低温脱硝的影响[J].化工学报, 2013, 64(8): 2867-2874. |
Han B, Lei Z G, Liu Q, et al. Influence of alkali metal compound on low-temperature NH3-SCR of NO over V2O5/AC catalyst[J].CIESC Journal, 2013, 64(8): 2867-2874. | |
15 | Williams A, Mccormick R, Lance M, et al. Effect of accelerated aging rate on the capture of fuel-borne metal impurities by emissions control devices [J]. SAE International Journal of Fuels and Lubricants, 2014, 7(2): 471-479. |
16 | Wang C, Wang C, Wang J, et al. Effects of Na+ on Cu/SAPO-34 for ammonia selective catalytic reduction [J]. Journal of Environmental Sciences, 2018, 70: 20-28. |
17 | Chen Z, Wang J, Wang J, et al. Disparate essences of residual, ion-exchanged, and impregnated Na ions on topology structure for Cu/SSZ-13 NH3 selective catalytic reduction catalysts [J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20610-20619. |
18 | Wang J, Zhao H, Haller G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts [J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
19 | Wang D, Jangjou Y, Liu Y, et al. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
20 | Su W, Li Z, Peng Y, et al. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging [J]. Physical Chemistry Chemical Physics, 2015, 17(43): 29142-29149. |
21 | Zones S. Zeolite SSZ-13 and its method of preparation: US 4544538A[P]. 1985-10-1. |
22 | Niu C, Shi X Y, Liu F D, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx[J]. Chemical Engineering Journal, 2016, 294: 254-263. |
23 | Kim Y J, Lee J K, Min K M, et al. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. Journal of Catalysis, 2014, 311: 447-457. |
24 | Zhang J M, Liu X Y, Li M, et al. Fast synthesis of submicron all-silica CHA zeolite particles using a seeding method[J]. RSC Advances, 2015, 5: 27087-27090. |
25 | Schmieg S, Oh S, Kim C, et al. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catalysis Today, 2012, 184(1): 252-261. |
26 | Gedeon A. Zeolites and Related Materials: Trends, Targets and Challenges[M]. Massiani P, Babonneau F. 4th ed. UK: Elsevier, 2008: 265. |
27 | Kumar M, Luo H, Román-Leshkov Y, et al. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control[J]. Journal of the American Chemical Society, 2015, 137(40): 13007-13017. |
28 | Ma L, Cheng Y S, Cavataio G, et al. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chemical Engineering Journal, 2013, 225: 323-330. |
29 | Luo J Y, Kamasamudram K, Currier N, et al. NH3-TPD methodology for quantifying hydrothermal aging of Cu/SSZ-13 SCR catalysts[J]. Chemical Engineering Science, 2018, 190: 60-67. |
30 | Yu T, Wang J, Shen M Q, et al. NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading[J]. Catalysis Science & Technology, 2013, 3: 3234-3241. |
31 | Ma L, Cheng Y, Cavataio G, et al. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J]. Applied Catalysis B: Environmental, 2014, 156/157: 428-437. |
32 | Luo J, Gao F, Kamasamudram K, et al. New insights into Cu/SSZ-13 SCR catalyst acidity(Ⅰ): Nature of acidic sites probed by NH3 titration [J]. Journal of Catalysis, 2017, 348: 291-299. |
33 | Cui Y, Wang Y, Walter E D, et al. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts [J]. Catalysis Today, 2020, 339: 233-240. |
34 | Gao F, Walter E D, Karp E M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies [J]. Journal of Catalysis, 2013, 300: 20-29. |
35 | Deka U, Juhin A, Eilertsen E A, et al. Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction [J]. The Journal of Physical Chemistry C, 2012, 116(7): 4809-4918. |
36 | Wang C, Wang J, Wang J, et al. The role of impregnated sodium ions in Cu/SSZ-13 NH3-SCR catalysts [J]. Catalysts, 2018, 8(12): 593. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[14] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[15] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||