化工学报 ›› 2023, Vol. 74 ›› Issue (2): 500-510.DOI: 10.11949/0438-1157.20220951
周璇1(), 李孟亚1, 孙杰1, 岑振凯1, 吕强三2, 周立山2, 王海涛2, 韩丹丹1(), 龚俊波1,3
收稿日期:
2022-07-05
修回日期:
2022-08-12
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
韩丹丹
作者简介:
周璇(1999—),女,硕士研究生,x_zhou7825@tju.edu.cn
基金资助:
Xuan ZHOU1(), Mengya LI1, Jie SUN1, Zhenkai CEN1, Qiangsan LYU2, Lishan ZHOU2, Haitao WANG2, Dandan HAN1(), Junbo GONG1,3
Received:
2022-07-05
Revised:
2022-08-12
Online:
2023-02-05
Published:
2023-03-21
Contact:
Dandan HAN
摘要:
氨基酸大多生长为针状或片状晶习,存在堆密度低、流动性差等问题,严重影响产品后加工处理过程。因此,实现氨基酸晶习的定向调控具有重要意义。添加剂对氨基酸晶习调控直接有效,广泛应用于工业生产中。本文主要从抑制和促进晶体生长两个角度,综述了添加剂对氨基酸晶体生长的作用机理。添加剂对晶体生长的抑制机理主要有两点:一是添加剂分子吸附到晶面上,阻碍溶质分子的扩散和聚集;二是添加剂分子嵌入晶格并占据生长位点。而添加剂促进晶体生长的机理为:添加剂加快了溶质分子在晶体表面的聚集速度、使晶体表面粗糙化和降低了溶剂层脱除能垒。最后,针对添加剂对氨基酸晶体生长影响的研究,从晶体工程的角度提出了通过分子模拟设计的添加剂定向控制氨基酸晶体生长,从而调控晶习的展望。
中图分类号:
周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510.
Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth[J]. CIESC Journal, 2023, 74(2): 500-510.
图2 (a)经典结晶:单体叠加;(b)单体直接结合到扭结/台阶边缘或者通过表面扩散结合到扭结/台阶位点;(c)生长条件对晶习的影响[17, 38]
Fig.2 (a) Classical crystallization:monomer addition;(b) Monomers direct incorporation into kink/step edges or by surface diffusion and incorporation into kink/step sites;(c) Growth conditions can influence crystal habit[17, 38]
1 | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517. |
Gong J B, Sun J, Wang J K. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517. | |
2 | 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474. |
Zhao S L, Wang Y G, Zhang T, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474. | |
3 | Alatalo H, Hatakka H, Kohonen J, et al. Process control and monitoring of reactive crystallization of L-glutamic acid[J]. AIChE Journal, 2010, 56(8): 2063-2076. |
4 | Desiraju G R. Crystal engineering: from molecule to crystal[J]. Journal of the American Chemical Society, 2013, 135(27): 9952-9967. |
5 | Bötschi S, Rajagopalan A K, Rombaut I, et al. From needle-like toward equant particles: a controlled crystal shape engineering pathway[J]. Computers & Chemical Engineering, 2019, 131: 106581. |
6 | Zhu D, Zhang S H, Cui P P, et al. Solvent effects on catechol crystal habits and aspect ratios: a combination of experiments and molecular dynamics simulation study[J]. Crystals, 2020, 10(4): 316. |
7 | Shi W Y, Xia M Z, Lei W, et al. Solvent effect on the crystal morphology of 2, 6-diamino-3, 5-dinitropyridine-1-oxide: a molecular dynamics simulation study[J]. Journal of Molecular Graphics and Modelling, 2014, 50: 71-77. |
8 | Ding L, Zong S H, Dang L P, et al. Effects of inorganic additives on polymorphs of glycine in microdroplets[J]. CrystEngComm, 2018, 20(2): 164-172. |
9 | Wu G Y. Amino acids: metabolism, functions, and nutrition[J]. Amino Acids, 2009, 37(1): 1-17. |
10 | 王健. 中国氨基酸产业现状[J]. 生物产业技术, 2014(4): 17-22. |
Wang J. Status quo of amino acid industry in China [J]. Biotechnology & Business, 2014(4): 17-22. | |
11 | 陈宁, 范晓光. 我国氨基酸产业现状及发展对策[J]. 发酵科技通讯, 2017, 46(4): 193-197. |
Chen N, Fan X G. Current situation and development strategy of amino acid industry in China[J]. Bulletin of Fermentation Science and Technology, 2017, 46(4): 193-197. | |
12 | Chow K, Tong H H Y, Lum S, et al. Engineering of pharmaceutical materials: an industrial perspective[J]. Journal of Pharmaceutical Sciences, 2008, 97(8): 2855-2877. |
13 | Ramamoorthy S, Kwak J H, Karande P, et al. A high-throughput assay for screening modifiers of calcium oxalate crystallization[J]. AIChE Journal, 2016, 62(10): 3538-3546. |
14 | Klapwijk A R, Simone E, Nagy Z K, et al. Tuning crystal morphology of succinic acid using a polymer additive[J]. Crystal Growth & Design, 2016, 16(8): 4349-4359. |
15 | Lovette M A, Doherty M F. Needle-shaped crystals: causality and solvent selection guidance based on periodic bond chains[J]. Crystal Growth & Design, 2013, 13(8): 3341-3352. |
16 | Collins K D, Neilson G W, Enderby J E. Ions in water: characterizing the forces that control chemical processes and biological structure[J]. Biophysical Chemistry, 2007, 128(2/3): 95-104. |
17 | Olafson K N, Li R, Alamani B G, et al. Engineering crystal modifiers: bridging classical and nonclassical crystallization[J]. Chemistry of Materials, 2016, 28(23): 8453-8465. |
18 | Orme C A, Noy A, Wierzbicki A, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 2001, 411(6839): 775-779. |
19 | Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture[J]. Journal of the American Chemical Society, 2013, 135(17): 6608-6617. |
20 | Chung J, Granja I, Taylor M G, et al. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition[J]. Nature, 2016, 536(7617): 446-450. |
21 | Weissbuch I, Lahav M, Leiserowitz L. Crystal morphology control with tailor-made additives. A stereochemical approach[M]//Advances in Crystal Growth Research. Amsterdam: Elsevier, 2001: 381-400. |
22 | Lee S H, Lee G H, Lee K H, et al. In situ tailor-made additives for molecular crystals: a simple route to morphological crystal engineering[J]. Crystal Growth & Design, 2016, 16(7): 3555-3561. |
23 | Constance E N, Mohammed M, Mojibola A, et al. Effect of additives on the crystal morphology of amino acids: a theoretical and experimental study[J]. The Journal of Physical Chemistry C, 2016, 120(27): 14749-14757. |
24 | Addadi L, Berkovitch-Yellin Z, Domb N, et al. Resolution of conglomerates by stereoselective habit modifications[J]. Nature, 1982, 296(5852): 21-26. |
25 | Sano C, Nagashima N, Kawakita T, et al. The effects of additives on the crystal habit of monosodium L-glutamate monohydrate[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 1070-1075. |
26 | Jung T, Sheng X X, Choi C K, et al. Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy[J]. Langmuir, 2004, 20(20): 8587-8596. |
27 | Farmanesh S, Ramamoorthy S, Chung J, et al. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization[J]. Journal of the American Chemical Society, 2014, 136(1): 367-376. |
28 | Ilevbare G A, Liu H Y, Edgar K J, et al. Maintaining supersaturation in aqueous drug solutions: impact of different polymers on induction times[J]. Crystal Growth & Design, 2013, 13(2): 740-751. |
29 | 韩丹丹. 有机小分子在溶液中的晶习调控[D]. 天津: 天津大学, 2020. |
Han D D. Crystal habit modification and regulation of small molecule organic compounds in solution crystallization[D]. Tianjin: Tianjin University, 2020. | |
30 | Li Z A, Johnson L M, Ricarte R G, et al. Enhanced performance of blended polymer excipients in delivering a hydrophobic drug through the synergistic action of micelles and HPMCAS[J]. Langmuir, 2017, 33(11): 2837-2848. |
31 | Frank D S, Matzger A J. Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical[J]. Molecular Pharmaceutics, 2019, 16(2): 682-688. |
32 | Wang Y, Du S C, Wang X M, et al. Spherulitic growth and morphology control of lithium carbonate: the stepwise evolution of core-shell structures[J]. Powder Technology, 2019, 355: 617-628. |
33 | Song Y, Wu Y T, Jiang Y P, et al. Polymers and solvent-induced polymorphic selection and preferential orientation of pyrazinamide crystal[J]. Crystal Growth & Design, 2020, 20(1): 352-361. |
34 | Zhang B, Wang Y, Thi S, et al. Enhancement of lysozyme crystallization using DNA as a polymeric additive[J]. Crystals, 2019, 9(4): 186. |
35 | Zhu W S, Romanski F S, Dalvi S V, et al. Atomistic simulations of aqueous griseofulvin crystals in the presence of individual and multiple additives[J]. Chemical Engineering Science, 2012, 73: 218-230. |
36 | Martin C, Oyen E, van Wanseele Y, et al. Injectable peptide-based hydrogel formulations for the extended in vivo release of opioids[J]. Materials Today Chemistry, 2017, 3: 49-59. |
37 | Burton W K, Cabrera N, Frank F. The growth of crystals and the equilibrium structure of their surfaces[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1951, 243: 299-358. |
38 | Olafson K N, Ketchum M A, Rimer J D, et al. Molecular mechanisms of hematin crystallization from organic solvent[J]. Crystal Growth & Design, 2015, 15(11): 5535-5542. |
39 | Vekilov P G, Kuznetsov Y G, Chernov A A. Interstep interaction in solution growth; (101) ADP face[J]. Journal of Crystal Growth, 1992, 121(4): 643-655. |
40 | Hillig W B. A derivation of classical two-dimensional nucleation kinetics and the associated crystal growth laws[J]. Acta Metallurgica, 1966, 14(12): 1868-1869. |
41 | Weissbuch I, Addadi L, Lahav M, et al. Molecular recognition at crystal interfaces[J]. Science, 1991, 253(5020): 637-645. |
42 | Clydesdale G, Hammond R B, Roberts K J. Molecular modeling of bulk impurity segregation and impurity-mediated crystal habit modification of naphthalene and phenanthrene in the presence of heteroimpurity species[J]. The Journal of Physical Chemistry B, 2003, 107(20): 4826-4833. |
43 | Hamilton B D, Weissbuch I, Lahav M, et al. Manipulating crystal orientation in nanoscale cylindrical pores by stereochemical inhibition[J]. Journal of the American Chemical Society, 2009, 131(7): 2588-2596. |
44 | Davey R J, Black S N, Logan D, et al. Structural and kinetic features of crystal growth inhibition: adipic acid growing in the presence of n-alkanoic acids[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(23): 3461. |
45 | Poornachary S K, Chow P S, Tan R B H. Effect of solution speciation of impurities on α-glycine crystal habit: a molecular modeling study[J]. Journal of Crystal Growth, 2008, 310(12): 3034-3041. |
46 | Poornachary S K, Chow P S, Tan R B H, et al. Molecular speciation controlling stereoselectivity of additives: impact on the habit modification in α-glycine crystals[J]. Crystal Growth & Design, 2007, 7(2): 254-261. |
47 | Han G J, Chow P S, Tan R B H. Growth behaviors of two similar crystals: the great difference[J]. Crystal Growth & Design, 2015, 15(3): 1082-1088. |
48 | Han G J, Chow P S, Tan R B H. Strong additive-surface interaction leads to the unusual revival of growth at solvent-poisoned faces of DL-alanine crystal[J]. Crystal Growth & Design, 2012, 12(11): 5555-5560. |
49 | Schram C J, Beaudoin S P, Taylor L S. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution[J]. Langmuir, 2015, 31(1): 171-179. |
50 | Schram C J, Taylor L S, Beaudoin S P. Influence of polymers on the crystal growth rate of felodipine: correlating adsorbed polymer surface coverage to solution crystal growth inhibition[J]. Langmuir, 2015, 31(41): 11279-11287. |
51 | Alonzo D E, Raina S, Zhou D L, et al. Characterizing the impact of hydroxypropylmethyl cellulose on the growth and nucleation kinetics of felodipine from supersaturated solutions[J]. Crystal Growth & Design, 2012, 12(3): 1538-1547. |
52 | Ilevbare G A, Liu H Y, Edgar K J, et al. Inhibition of solution crystal growth of ritonavir by cellulose polymers—factors influencing polymer effectiveness[J]. CrystEngComm, 2012, 14(20): 6503. |
53 | Wang Y, Xue F M, Yu S, et al. Insight into the morphology and crystal growth of DL-methionine in aqueous solution with presence of cellulose polymers[J]. Journal of Molecular Liquids, 2021, 343: 116967. |
54 | Lechuga-Ballesteros D, Rodríguez-Hornedo N. Effects of molecular structure and growth kinetics on the morphology of L-alanine crystals[J]. International Journal of Pharmaceutics, 1995, 115(2): 151-160. |
55 | Fraxedas J. Water at Interfaces: A Molecular Approach[M]. Boca Raton: CRC Press, 2014: 1-236. |
56 | Palanisamy D, Karuppannan S. Nucleation control and growth of metastable α-L-glutamic acid single crystals in the presence of L-phenylalanine[J]. Procedia Engineering, 2016, 141: 70-77. |
57 | Torbeev V Y, Shavit E, Weissbuch I, et al. Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions[J]. Crystal Growth & Design, 2005, 5(6): 2190-2196. |
58 | Gidalevitz D, Weissbuch I, Kjaer K, et al. Design of two-dimensional crystals as models for probing the structure of the solid-liquid interface[J]. Journal of the American Chemical Society, 1994, 116(8): 3271-3278. |
59 | Sato H, Doki N, Yokota M, et al. New optical resolution method for racemic DL-aspartic acid by crystallization in the presence of D- or L-asparagine as a tailor-made additive[J]. Journal of Chemical Engineering of Japan, 2015, 48(11): 903-908. |
60 | Liu F, Wang L Y, Li W L, et al. Crystal growth of L-alanine with glycine-based oligopeptides: the revelation for the competitive mechanism[J]. Crystal Growth & Design, 2021, 21(7): 3818-3830. |
61 | Dowling R, Davey R J, Curtis R A, et al. Acceleration of crystal growth rates: an unexpected effect of tailor-made additives[J]. Chemical Communications, 2010, 46(32): 5924-5926. |
62 | Yang X Y, Qian G, Duan X Z, et al. Impurity effect of L-valine on L-alanine crystal growth[J]. Crystal Growth & Design, 2013, 13(3): 1295-1300. |
63 | Yin H, Ge H Y, Chen Z R, et al. Growth behavior of β form DL-methionine crystal in the presence of inorganic acids and bases additives: a combination of experiments and molecular dynamics simulation study[J]. Journal of Crystal Growth, 2022, 587: 126636. |
64 | Yamanobe M, Takiyama H, Matsuoka M. Polymorphic transformation of DL-methionine crystals in aqueous solutions[J]. Journal of Crystal Growth, 2002, 237/238/239: 2221-2226. |
65 | Humphrey J. CrystEngComm—continuing to grow[J]. CrystEngComm, 2007, 9(1): 12-14. |
66 | Thakur A, Kumar D, Thipparaboina R, et al. Exploration of crystal simulation potential by fluconazole isomorphism and its application in improvement of pharmaceutical properties[J]. Journal of Crystal Growth, 2014, 406: 18-25. |
67 | Schmidt C, Yürüdü C, Wachsmuth A, et al. Modeling the morphology of benzoic acid crystals grown from aqueous solution[J]. CrystEngComm, 2011, 13(4): 1159. |
68 | Liu Y Z, Yu T, Lai W P, et al. Deciphering solvent effect on crystal growth of energetic materials for accurate morphology prediction[J]. Crystal Growth & Design, 2020, 20(2): 521-524. |
69 | Berkovitch-Yellin Z. Toward an ab initio derivation of crystal morphology[J]. Journal of the American Chemical Society, 1985, 107(26): 8239-8253. |
70 | Martins P M, Rocha F A, Rein P. The influence of impurities on the crystal growth kinetics according to a competitive adsorption model[J]. Crystal Growth & Design, 2006, 6(12): 2814-2821. |
71 | Gupta K M, Yin Y N, Poornachary S K, et al. Atomistic simulation to understand anisotropic growth behavior of naproxen crystal in the presence of polymeric additives[J]. Crystal Growth & Design, 2019, 19(7): 3768-3776. |
72 | Sizemore J P, Doherty M F. A new model for the effect of molecular imposters on the shape of faceted molecular crystals[J]. Crystal Growth & Design, 2009, 9(6): 2637-2645. |
73 | Ristic R I, DeYoreo J J, Chew C M. Does impurity-induced step-bunching invalidate key assumptions of the Cabrera-Vermilyea model? [J]. Crystal Growth & Design, 2008, 8(4): 1119-1122. |
74 | Kuvadia Z B, Doherty M F. Effect of structurally similar additives on crystal habit of organic molecular crystals at low supersaturation[J]. Crystal Growth & Design, 2013, 13(4): 1412-1428. |
75 | Tilbury C J, Green D A, Marshall W J, et al. Predicting the effect of solvent on the crystal habit of small organic molecules[J]. Crystal Growth & Design, 2016, 16(5): 2590-2604. |
76 | Snyder R C, Doherty M F. Predicting crystal growth by spiral motion[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2104): 1145-1171. |
77 | Kuvadia Z B, Doherty M F. Spiral growth model for faceted crystals of non-centrosymmetric organic molecules grown from solution[J]. Crystal Growth & Design, 2011, 11(7): 2780-2802. |
78 | Tilbury C J, Doherty M F. Modeling layered crystal growth at increasing supersaturation by connecting growth regimes[J]. AIChE Journal, 2017, 63(4): 1338-1352. |
79 | Li J J, Tilbury C J, Joswiak M N, et al. Rate expressions for kink attachment and detachment during crystal growth[J]. Crystal Growth & Design, 2016, 16(6): 3313-3322. |
80 | Tilbury C J, Joswiak M N, Peters B, et al. Modeling step velocities and edge surface structures during growth of non-centrosymmetric crystals[J]. Crystal Growth & Design, 2017, 17(4): 2066-2080. |
81 | Shim H M, Koo K K. Molecular approach to the effect of interfacial energy on growth habit of ε-HNIW[J]. Crystal Growth & Design, 2016, 16(11): 6506-6513. |
82 | Shim H M, Myerson A S, Koo K K. Molecular modeling on the role of local concentration in the crystallization of L-methionine from aqueous solution[J]. Crystal Growth & Design, 2016, 16(6): 3454-3464. |
83 | Shim H M, Koo K K. Crystal morphology prediction of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by the spiral growth model[J]. Crystal Growth & Design, 2014, 14(4): 1802-1810. |
84 | Zhao Y S, Tilbury C J, Landis S, et al. A new software framework for implementing crystal growth models to materials of any crystallographic complexity[J]. Crystal Growth & Design, 2020, 20(5): 2885-2892. |
85 | Li J J, Tilbury C J, Kim S H, et al. A design aid for crystal growth engineering[J]. Progress in Materials Science, 2016, 82: 1-38. |
[1] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[2] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[3] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[4] | 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
[5] | 门文欣, 彭庆收, 桂霞. 不同季铵盐作用下的CO2水合物相平衡[J]. 化工学报, 2022, 73(4): 1472-1482. |
[6] | 郑喜, 王涛, 任永胜, 赵珍珍, 王雪琪, 赵之平. 聚间苯二甲酰间苯二胺平板膜的制备及其性能研究[J]. 化工学报, 2022, 73(10): 4707-4721. |
[7] | 全翠, 张广涛, 许毓, 高宁博. 污泥热解残渣中重金属形态分布的研究进展[J]. 化工学报, 2022, 73(1): 134-143. |
[8] | 李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807. |
[9] | 王宗旭,李紫欣,白璐,董海峰,张香平. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466-3477. |
[10] | 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22. |
[11] | 宋卓栋, 张作毅, 潘学龙, 王云芳. 聚甲醛二甲醚体系汽液平衡数据的测定与关联[J]. 化工学报, 2020, 71(S1): 1-6. |
[12] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
[13] | 何忠义, 贾广跃, 张萌萌, 晏金灿, 熊丽萍, 纪红兵. 纳米六方氮化硼负载离子液体润滑添加剂的摩擦学特性[J]. 化工学报, 2020, 71(9): 4303-4313. |
[14] | 徐超, 薛誉, 陈虹月, 胡燚. 手性脯氨酸类离子液体化学修饰猪胰脂肪酶催化性能研究[J]. 化工学报, 2019, 70(6): 2221-2228. |
[15] | 张文林, 霍宇, 李功伟, 孙腾飞, 赵勇琪, 李春利. 离子液体作为电解液添加剂用于高压锂离子电池[J]. 化工学报, 2019, 70(6): 2334-2342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||