化工学报 ›› 2022, Vol. 73 ›› Issue (1): 134-143.doi: 10.11949/0438-1157.20210905

• 综述与专论 • 上一篇    下一篇

污泥热解残渣中重金属形态分布的研究进展

全翠1,2(),张广涛1,许毓2,高宁博1()   

  1. 1.西安交通大学能源与动力工程学院,陕西 西安 710049
    2.石油石化污染物控制与处理国家重点实验室,北京 102206
  • 收稿日期:2021-07-01 修回日期:2021-09-27 出版日期:2022-01-05 发布日期:2022-01-18
  • 通讯作者: 高宁博 E-mail:quancui@xjtu.edu.cn;nbogao@xjtu.edu.cn
  • 作者简介:全翠(1985—),女,博士,副教授,quancui@xjtu.edu.cn
  • 基金资助:
    陕西省重点研发计划项目(2021GY-114);石油石化污染物控制与处理国家重点实验室开放课题(PPC2019006);陕西省联合基金项目-陕煤联合基金重点项目(2019JLZ-12)

Recent advances on the speciation distribution of heavy metals in sludge pyrolysis residue

Cui QUAN1,2(),Guangtao ZHANG1,Yu XU2,Ningbo GAO1()   

  1. 1.School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.State Key Laboratory of Petroleum Pollutant Control, Beijing 102206, China
  • Received:2021-07-01 Revised:2021-09-27 Published:2022-01-05 Online:2022-01-18
  • Contact: Ningbo GAO E-mail:quancui@xjtu.edu.cn;nbogao@xjtu.edu.cn

摘要:

目前,我国城市及工业污水产生量已达7.34×1010 t/a,对其处理产生的污泥量达7.29×107 t/a。污泥的主要去向为土地利用、焚烧发电和建材利用等。在这些再利用过程中,重金属特别是Cr、Cu、Zn、Ni等对其再利用影响较大。污泥处理多采用热解处理,重金属在处理过程中会富集在热解残渣中。阐释重金属在热解残渣中的形态分布,对于其再利用过程意义重大。本文以改进的欧共体物质标准局(BCR)连续提取法为基础,总结了污泥热解残渣中重金属的形态分布,阐述了热解工况(热解温度、停留时间、催化剂)、共热解及预处理对热解残渣中重金属形态分布的影响,探讨了污泥热解残渣中重金属未来的研究趋势。

关键词: 热解, 重金属, 催化剂, 添加剂, 稳定性, 形态分布

Abstract:

The amount of urban and industrial sewage generated in China has reached 7.34×1010 t/a, and the number of sludge produced by its treatment has reached 7.29×107 t/a. The main utilization methods of sludge are land application, incineration for power generation and for building materials. Heavy metals, especially Cr, Cu, Zn, Ni etc., have a great impact on these reuse processes. The sludge treatment mainly adopts pyrolysis technology. Heavy metals are concentrated in the pyrolysis residue during the pyrolysis process. Explaining the speciation distribution of heavy metals in the pyrolysis residue is of great significance to the reuse process. Based on the modified European Community Bureu of Reference (BCR) sequential extraction method, the speciation distribution of heavy metals in the sludge pyrolysis residue is summarized, the effect of pyrolysis conditions (pyrolysis temperature, residence time and catalyst), co-pyrolysis and pretreatment on the speciation distribution of heavy metals in the pyrolysis residue is described, and the future research trends of heavy metals in sludge pyrolysis residues are discussed.

Key words: pyrolysis, heavy metals, catalyst, additive, stability, speciation distribution

中图分类号: 

  • X 703
1 智研咨询集团. 2021―2027年中国污泥干燥机行业调查与发展前景报告[EB/OL]. 北京: 智研咨询集团, 2021[2021-08-21]. .
Zhiyan Consultative Group. Report of Sludge Dryer Industry Survey and Development Prospect in China from 2021 to 2027[EB/OL]. Beijing: Zhiyan Consultative Group, 2021[2021-08-21]. .
2 杨延璐, 许成君, 仝坤, 等. 污泥热解催化剂的研究进展[J]. 化工环保, 2020, 40(6): 580-585.
Yang Y L, Xu C J, Tong K, et al. Research progresses on catalysts for sludge pyrolysis[J]. Environmental Protection of Chemical Industry, 2020, 40(6): 580-585.
3 Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water―a comprehensive review[J]. Resource-Efficient Technologies, 2016, 2(4): 175-184.
4 Teoh S K, Li L Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective[J]. Journal of Cleaner Production, 2020, 247: 119495.
5 Huang H J, Yuan X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresource Technology, 2016, 200: 991-998.
6 王艳语, 苗俊艳, 侯翠红, 等. 城市污泥热解及其固体残渣资源化利用[J]. 化工矿物与加工, 2020, 49(12): 41-45.
Wang Y Y, Miao J Y, Hou C H, et al. Pyrolysis of municipal sludge and utilization of its solid residues[J]. Industrial Minerals & Processing, 2020, 49(12): 41-45.
7 Fonts I, Gea G, Azuara M, et al. Sewage sludge pyrolysis for liquid production: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2781-2805.
8 刁韩杰. 不同热解条件对污泥炭特性及重金属行为的影响[D]. 杭州: 浙江农林大学, 2019.
Diao H J. Effects of different pyrolysis conditions on carbon characteristics and heavy metal behavior of sludge[D]. Hangzhou: Zhejiang A & F University, 2019.
9 Wang X D, Li C X, Li Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52.
10 Méndez A, Paz-Ferreiro J, Araujo F, et al. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 46-52.
11 Racek J, Sevcik J, Chorazy T, et al. Biochar - recovery material from pyrolysis of sewage sludge: a review[J]. Waste and Biomass Valorization, 2020, 11(7): 3677-3709.
12 Leng L J, Yuan X Z, Huang H J, et al. Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge[J]. Fuel Processing Technology, 2015, 129: 8-14.
13 Gao N B, Li J Q, Quan C, et al. Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive[J]. Fuel, 2020, 266: 117090.
14 Gao N B, Kamran K, Quan C, et al. Thermochemical conversion of sewage sludge: a critical review[J]. Progress in Energy and Combustion Science, 2020, 79: 100843.
15 Naqvi S R, Tariq R, Hameed Z, et al. Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method[J]. Renewable Energy, 2019, 131: 854-860.
16 Shao Q Q, Ju Y Y, Guo W J, et al. Pyrolyzed municipal sewage sludge ensured safe grain production while reduced C emissions in a paddy soil under rice and wheat rotation[J]. Environmental Science and Pollution Research, 2019, 26(9): 9244-9256.
17 Manara P, Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion―a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2566-2582.
18 李金灵, 屈撑囤, 朱世东, 等. 含油污泥热解残渣特性及其资源化利用研究概述[J]. 材料导报, 2018, 32(17): 3023-3032.
Li J L, Qu C T, Zhu S D, et al. Characteristics and reutilization of pyrolytic residues of oily sludge: an overview[J]. Materials Reports, 2018, 32(17): 3023-3032.
19 易龙生, 康路良, 王三海, 等. 市政污泥资源化利用的新进展及前景[J]. 环境工程, 2014, 32(S1): 992-997.
Yi L S, Kang L L, Wang S H, et al. New progress of resource utilization of municipal sludge and its prospect[J]. Environmental Engineering, 2014, 32(S1): 992-997.
20 中国国家标准化管理委员会. 农用污泥污染物控制标准: [S]. 北京: 中国标准出版社, 2018.
Standardization Administration of the People's Republic of China. Control standards of pollutants in sludge for agricultural use: [S]. Beijing: Standards Press of China, 2018.
21 Huang R X, Zhang B, Saad E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269.
22 Legros S, Levard C, Marcato-Romain C E, et al. Anaerobic digestion alters copper and zinc speciation[J]. Environmental Science & Technology, 2017, 51(18): 10326-10334.
23 Bogusz A, Oleszczuk P. Effect of biochar addition to sewage sludge on cadmium, copper and lead speciation in sewage sludge-amended soil[J]. Chemosphere, 2020, 239: 124719.
24 Jin J W, Li Y N, Zhang J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426.
25 Samolada M C, Zabaniotou A A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece[J]. Waste Management, 2014, 34(2): 411-420.
26 Praspaliauskas M, Pedišius N, Striūgas N. Elemental migration and transformation from sewage sludge to residual products during the pyrolysis process[J]. Energy & Fuels, 2018, 32(4): 5199-5208.
27 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461.
Guo G H, Chen T B, Yang J, et al. Regional distribution characteristics and variation of heavy metals in sewage sludge of China[J]. Acta Scientiae Circumstantiae, 2014, 34(10): 2455-2461.
28 Li T F, Zhang Y X, Ren Z Y, et al. The fate of heavy metals in excess sludge during disintegration by discharge plasma[J]. Separation and Purification Technology, 2021, 277: 119433.
29 解道雷, 孔慈明, 徐龙乾, 等. 城市污泥中重金属存在形态、去除及稳定化研究进展[J].化工进展, 2018, 37(1): 330-342.
Xie D L, Kong C M, Xu L Q, et al. Developments of the speciation, removel and stabilization of heavy metals in municipal sludge[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 330-342.
30 Tang J, He J G, Tang H J, et al. Heavy metal removal effectiveness, flow direction and speciation variations in the sludge during the biosurfactant-enhanced electrokinetic remediation[J]. Separation and Purification Technology, 2020, 246: 116918.
31 Wang X D, Chang V W C, Li Z W, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412: 125200.
32 陈雅洁. 城市污水污泥加压热解及产物特性研究[D]. 大连: 大连理工大学, 2018.
Chen Y J. Study on pressurized pyrolysis of municipal municipal sewage sludge and characteristics of products[D]. Dalian: Dalian University of Technology, 2018.
33 Chen Z E, Luo L, Xiao D Y, et al. Selected dark sides of biomass-derived biochars as environmental amendments[J]. Journal of Environmental Sciences, 2017, 54: 13-20.
34 Chen T, Zhang Y X, Wang H T, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource Technology, 2014, 164: 47-54.
35 Kazi T G, Jamali M K, Kazi G H, et al. Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test[J]. Analytical and Bioanalytical Chemistry, 2005, 383(2): 297-304.
36 姜媛媛, 王彦, 段文焱, 等. 市政污泥热解过程中重金属迁移特性及环境效应评估[J]. 环境科学, 2021, 42(6): 2966-2974.
Jiang Y Y, Wang Y, Duan W Y, et al. Migration and environmental effects of heavy metals in the pyrolysis of municipal sludge[J]. Environmental Science, 2021, 42(6): 2966-2974.
37 毛凌晨, 施柳, 叶华, 等. 沉积物中重金属形态分析技术的适用范围[J]. 理化检验-化学分册, 2017, 53(9): 1109-1116.
Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils[C]//Workshop on Sequential Extraction in Soil and Sediments. Sitges, Spain: European Community Bureau of Reference, 1993: 231-235.
38 Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61.
39 Liu L H, Huang L, Huang R, et al. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate[J]. Journal of Hazardous Materials, 2021, 403: 123648.
40 朱明伟, 蒋绍坚, 付国富, 等. 油菜秆热解过程中重金属形态研究[J]. 中南大学学报(自然科学版), 2019, 50(9): 2304-2309.
Zhu M W, Jiang S J, Fu G F, et al. Morphology of heavy metals in process of pyrolysis of rape stalk[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2304-2309.
41 Zhang Z Y, Ju R, Zhou H T, et al. Migration characteristics of heavy metals during sludge pyrolysis[J]. Waste Management, 2021, 120: 25-32.
42 谷善勇, 骆骄阳, 刘好, 等. 铬元素及其形态分析研究进展[J]. 中国中药杂志, 2018, 43(23): 4622-4631.
Gu S Y, Luo J Y, Liu H, et al. Research progress of chromium and its speciation analysis[J]. China Journal of Chinese Materia Medica, 2018, 43(23): 4622-4631.
43 Devi P, Saroha A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162: 308-315.
44 刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3): 29-34.
Diao H J, Zhang J, Wang M Y, et al. Effect of high temperature pyrolysis of sewage sludge on characteristics of residual biochar and speciation changes of heavy metals[J]. Environmental Engineering, 2019, 37(3): 29-34.
45 郭子逸, 邵敬爱, 王贤华, 等. 污泥微波热解过程重金属转化特性与风险评估[J]. 环境工程学报, 2017, 11(3): 1801-1806.
Guo Z Y, Shao J A, Wang X H, et al. Transformation characteristic of heavy metals during microwave pyrolysis of sewage sludge and risk assessment[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1801-1806.
46 Li B B, Ding S X, Fan H H, et al. Experimental investigation into the effect of pyrolysis on chemical forms of heavy metals in sewage sludge biochar (SSB), with brief ecological risk assessment[J]. Materials, 2021, 14(2): 447.
47 范世锁, 汤婕, 程燕, 等. 污泥基生物炭中重金属的形态分布及潜在生态风险研究[J]. 生态环境学报, 2015, 24(10): 1739-1744.
Fan S S, Tang J, Cheng Y, et al. Investigation of the speciation of heavy metals in sludge-derived biochar and its potential ecological risk[J]. Ecology and Environmental Sciences, 2015, 24(10): 1739-1744.
48 Zhang J, Jin J W, Wang M Y, et al. Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility[J]. Environmental Research, 2020, 191: 110034.
49 张伟, 陈晓平, 杨叙军, 等. 市政污泥中低温气化及重金属迁移转化特性[J]. 化工进展, 2018, 37(9): 3657-3665.
Zhang W, Chen X P, Yang X J, et al. Characteristics of medium-low temperature gasification of sewage sludge and migration and transformation of heavy metals[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3657-3665.
50 詹亚力, 戚琳琳, 郭绍辉, 等. 剩余污泥热解及其残渣综合利用的研究进展[J]. 化工进展, 2009, 28(2): 334-338.
Zhan Y L, Qi L L, Guo S H, et al. Progress of pyrolysis of sewage sludge and comprehensive utilization of its solid residue[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 334-338.
51 全翠, 王惠惠, 高宁博. 煤热解影响因素与油品提质研究进展[J]. 煤炭科学技术, 2020, 48(S1): 187-193.
Quan C, Wang H H, Gao N B. Review of factors affecting coal pyrolysis and quality improvement of oil[J]. Coal Science and Technology, 2020, 48(S1): 187-193.
52 Han H D, Hu S, Syed-Hassan S S A, et al. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis[J]. Bioresource Technology, 2017, 236: 138-145.
53 Wang Z P, Liu K, Xie L K, et al. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104659.
54 Jin J W, Wang M Y, Cao Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226.
55 Chanaka Udayanga W D, Veksha A, Giannis A, et al. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018, 226: 721-744.
56 李爱民, 曲艳丽, 姚伟, 等. 污泥焚烧底灰中重金属残留特性的实验研究[J]. 环境污染治理技术与设备, 2002(11): 20-24.
Li A M, Qu Y L, Yao W, et al. An experimental study on remains property of heavy metals in the bottom ash[J]. Techniques and Equipment for Environmental Pollution Control, 2002(11): 20-24.
57 黄蓉, 刘立恒, 何东薇, 等. 热解条件对硫酸钙/污泥基生物炭中Pb、Ni形态分布及生态风险的影响[J]. 环境污染与防治, 2020, 42(7): 849-853.
Huang R, Liu L H, He D W, et al. Effects of pyrolysis conditions on the speciation distribution and ecological risk of Pb and Ni in calcium sulphate/sludge based biochar[J]. Environmental Pollution & Control, 2020, 42(7): 849-853.
58 郭子逸, 邵敬爱, 杨海平, 等. 污泥热解处理过程中重金属迁移与转化规律综述[J]. 能源与环境, 2016(4): 65-66, 68.
Guo Z Y, Shao J A, Yang H P, et al. Review of the migration and transformation of heavy metals during pyrolysis of sludge[J]. Energy and Environment, 2016(4): 65-66, 68.
59 祝初梅. 微波高温热解城市污泥重金属固定效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
Zhu C M. Study on the immobilization of heavy metals in residues from microwave pyrolysis of sludge[D]. Harbin: Harbin Institute of Technology, 2007.
60 郭子逸. 污泥微波热解过程重金属迁移转化特性研究[D]. 武汉: 华中科技大学, 2016.
Guo Z Y. The migration and transformation behaviors of heavy metals during the microwave pyrolysis of sewage sludge[D]. Wuhan: Huazhong University of Science and Technology, 2016.
61 王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875.
Wang F C, Gao N B, Quan C. Progress on pyrolysis technology of waste tire and upgrade and recycle utilization of carbon black product[J]. CIESC Journal, 2019, 70(8): 2864-2875.
62 Chen D K, Hu H Y, Xu Z, et al. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chemical Engineering Journal, 2015, 267: 201-206.
63 Sun S C, Huang X F, Lin J H, et al. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge[J]. Waste Management, 2018, 77: 131-139.
64 Tian T, Liu Q S. Effects of added salts on sewage sludge char characteristics and heavy metal behaviors[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104774.
65 Chen R Q, Ma X Q, Yu Z S, et al. Study on synchronous immobilization technology of heavy metals and hydrolyzed nitrogen during pyrolysis of sewage sludge[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106079.
66 Li Z J, Deng H, Yang L, et al. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge[J]. Bioresource Technology, 2018, 256: 216-223.
67 Wang Z P, Xie L K, Liu K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438.
68 Wang Z P, Shen R, Ji S B, et al. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil[J]. Journal of Hazardous Materials, 2021, 419: 126468.
69 汪刚, 余广炜, 谢胜禹, 等. 添加不同塑料与污泥混合热解对生物炭中重金属的影响[J]. 燃料化学学报, 2019, 47(5): 611-620.
Wang G, Yu G W, Xie S Y, et al. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 611-620.
70 Peng H L, Li D, Ye J, et al. Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper[J]. Journal of Environmental Management, 2019, 235: 224-230.
71 Peng H L, Guan T, Luo J S, et al. Pretreatment with Ochrobactrum immobilizes chromium and copper during sludge pyrolysis[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110755.
72 Peng H L, Wu Y K, Guan T, et al. Sludge aging stabilizes heavy metals subjected to pyrolysis[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109984.
73 Wang X D, Li C X, Zhang B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis[J]. Bioresource Technology, 2016, 221: 560-567.
74 Wang X D, Chi Q Q, Liu X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706.
[1] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[2] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[3] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[4] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[5] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
[6] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[7] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[8] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[9] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[10] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[11] 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261.
[12] 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
[13] 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173.
[14] 陈冠益, 童图军, 李瑞, 王燕杉, 颜蓓蓓, 李宁, 侯立安. 热解时间对污泥生物炭活化过硫酸盐的影响研究[J]. 化工学报, 2022, 73(5): 2111-2119.
[15] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!