化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3466-3477.doi: 10.11949/0438-1157.20210062

• 综述与专论 • 上一篇    下一篇

固/液界面纳米气泡形成及稳定性研究进展

王宗旭1,2(),李紫欣1,2,白璐1,董海峰1,3,张香平1,2,3()   

  1. 1.中国科学院过程工程研究所,北京 100190
    2.中国科学院大学中丹学院,北京 100049
    3.先进能源科学与技术 广东省实验室,广东 惠州 516003
  • 收稿日期:2021-01-11 修回日期:2021-05-04 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 张香平 E-mail:zxwang@ipe.ac.cn;xpzhang@ipe.ac.cn
  • 作者简介:王宗旭(1990—),男,博士研究生,zxwang@ipe.ac.cn
  • 基金资助:
    国家重点研发计划项目(2020YFA0710200);国家自然科学基金重点项目(21838010);中国科学院科研仪器设备研制项目(YJKYYQ20200062)

Formation and stability of nanobubble at solid/liquid interface

WANG Zongxu1,2(),LI Zixin1,2,BAI Lu1,DONG Haifeng1,3,ZHANG Xiangping1,2,3()   

  1. 1.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2.Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
    3.Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, Guangdong, China
  • Received:2021-01-11 Revised:2021-05-04 Published:2021-07-05 Online:2021-07-05
  • Contact: ZHANG Xiangping E-mail:zxwang@ipe.ac.cn;xpzhang@ipe.ac.cn

摘要:

固/液界面上形成界面纳米气泡(SNBs),广泛存在于电催化、流体输送、矿物浮选等领域中,并影响各个过程的效率,因此明确其形成及稳定机理对过程调控具有重要意义。首先从实验观察和模拟计算两个角度,对纳米气泡的研究方法进行探讨,综述了不同气体类型、固体界面性质、液相添加剂下纳米气泡的形成规律。由于目前纳米气泡形成后的稳定性尚不十分明确,主要总结了现阶段广为接受的接触线钉扎稳定机制,并分析了该领域的研究现状。此外,考虑到离子液体作为重要的化工溶剂,概述了该体系中微纳气泡的相关研究。最后简要对未来工作进行了展望,以期为离子液体体系中纳米气泡的研究提供新思路。

关键词: 纳米气泡, 气体, 界面, 添加剂, 稳定性, 离子液体

Abstract:

The behavior of surface nanobubbles (SNBs) form at the solid/liquid interface is widely found in industrial fields such as electrocatalysis, fluid transport, and mineral flotation, which can affect the efficiency of the processes in these fields. So, it is essential to regulate the process of bubble formation, in which the clarification of their formation and stabilization mechanisms were required. Here, this article described the research methodologies of nanobubbles formed from both experimental and computational perspectives, discussed the regular pattern of nanobubbles formation under gas types, solid interface properties, and liquid phase additives. Since the stability of nanobubbles after formation is not very clear at present, this article integrated the widely accepted stabilization mechanism of contact line pinning to show the current status of this research area. In addition, considering ionic liquids as important chemical solvents, this article provided an overview of the research on micro-nano bubble formation in ionic-liquid-system. Finally, this review concluded with a prospect of the future, and this article was expected to provide new insights for the study of nanobubbles in ionic-liquid-system.

Key words: nanobubbles, gas, interface, additive, stability, ionic liquids

中图分类号: 

  • TQ 530.11

图1

扫描电化学池显微镜生成单个H2纳米气泡图示[39]"

图2

液相中纳米气泡成核类型及能量图示[64](a)平面上的非均质成核;(b)球形纳米颗粒上的非均质成核;(c)均质成核(红色线)、平面上的非均质成核(黑色线)、球形纳米颗粒上的非均质成核(蓝色线)"

1 Zhang X, Winnik F M. Preface to the nanobubbles special issue[J]. Langmuir, 2016, 32(43): 11071.
2 张雪花, 胡钧. 固液界面纳米气泡的研究进展[J]. 化学进展, 2004, 16(5): 673-681.
Zhang X H, Hu J. Nanobubbles at the solid/water interface[J]. Progress in Chemistry, 2004, 16(5): 673-681.
3 Attard P, Moody M P, Tyrrell J W G. Nanobubbles: the big picture[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 314(1/2/3/4): 696-705.
4 Chan C U, Ohl C D. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics[J]. Physical Review Letters, 2012, 109(17): 174501.
5 Alheshibri M, Qian J, Jehannin M, et al. A history of nanobubbles[J]. Langmuir, 2016, 32(43): 11086-11100.
6 Zou J, Zhang H, Guo Z, et al. Surface nanobubbles nucleate liquid boiling[J]. Langmuir, 2018, 34(46): 14096-14101.
7 Ke S, Xiao W, Quan N N, et al. Formation and stability of bulk nanobubbles in different solutions[J]. Langmuir, 2019, 35(15): 5250-5256.
8 Zhang X H, Maeda N. Interfacial gaseous states on crystalline surfaces[J]. The Journal of Physical Chemistry C, 2011, 115(3): 736-743.
9 Zhang Y, Zhao L, Deng S, et al. Effect of nanobubble evolution on hydrate process: a review[J]. Journal of Thermal Science, 2019, 28(5): 948-961.
10 Angulo A, van der Linde P, Gardeniers H, et al. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
11 Hu H B, Wang D Z, Ren F, et al. A comparative analysis of the effective and local slip lengths for liquid flows over a trapped nanobubble[J]. International Journal of Multiphase Flow, 2018, 104: 166-173.
12 Wang Y F, Pan Z C, Luo X M, et al. Effect of nanobubbles on adsorption of sodium oleate on calcite surface[J]. Minerals Engineering, 2019, 133: 127-137.
13 Azevedo A, Oliveira H, Rubio J. Bulk nanobubbles in the mineral and environmental areas: updating research and applications[J]. Advances in Colloid and Interface Science, 2019, 271: 101992.
14 Calgaroto S, Wilberg K Q, Rubio J. On the nanobubbles interfacial properties and future applications in flotation[J]. Minerals Engineering, 2014, 60: 33-40.
15 Kalacheva A V, Medvedev V A, Serkov A T. Continuous deaeration of spinning solutions of polyacrylonitrile in dimethyl acetamide[J]. Fibre Chemistry, 2001, 33(1): 9-11.
16 王丽娟, 党晓波, 郑桂宁. 碳纤维原丝纺丝液脱单、脱泡工艺及装置技术研究[J]. 合成纤维, 2017, 46(11): 16-19.
Wang L J, Dang X B, Zheng G N. Study on the process and device of de-monomer and de-bubble of carbon fiber precursor spinning solution[J]. Synthetic Fiber in China, 2017, 46(11): 16-19.
17 Pereiro I, Fomitcheva K A, Petrini L, et al. Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics[J]. Lab on a Chip, 2019, 19(14): 2296-2314.
18 Fatemi N, Dong Z Y, van Gerven T, et al. Microbubbles as heterogeneous nucleation sites for crystallization in continuous microfluidic devices[J]. Langmuir, 2019, 35(1): 60-69.
19 Zhu J, An H, Alheshibri M, et al. Cleaning with bulk nanobubbles[J]. Langmuir, 2016, 32(43): 11203-11211.
20 Etchepare R, Azevedo A, Calgaroto S, et al. Removal of ferric hydroxide by flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 184: 347-353.
21 Cho S H, Kim J Y, Chun J H, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1/2/3): 28-34.
22 Postnikov A V, Uvarov I V, Penkov N V, et al. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis[J]. Nanoscale, 2018, 10(1): 428-435.
23 Yang J W, Duan J M, Fornasiero D, et al. Very small bubble formation at the solid-water interface[J]. The Journal of Physical Chemistry B, 2003, 107(25): 6139-6147.
24 Li D Y, Qi L T, Liu Y B, et al. Study on the formation and properties of trapped nanobubbles and surface nanobubbles by spontaneous and temperature difference methods[J]. Langmuir, 2019, 35(37): 12035-12041.
25 Lou S T, Ouyang Z Q, Zhang Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000, 18(5): 2573.
26 Walczyk W, Schönherr H. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles[J]. Langmuir, 2013, 29(2): 620-632.
27 Teshima H, Takahashi K, Takata Y, et al. Wettability of AFM tip influences the profile of interfacial nanobubbles[J]. Journal of Applied Physics, 2018, 123(5): 054303.
28 Kundu P, Liu S Y, Chen F R, et al. In-situ generation of highly stable, sub 10-nm oxygen nanobubbles in liquid environmental tem[C]//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). Shanghai, China, 2016: 133-136.
29 Chen J, Zhou K, Wang Y, et al. Measuring the activation energy barrier for the nucleation of single nanosized vapor bubbles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26): 12678-12683.
30 Lemay S G. Noise as data: nucleation of electrochemically generated nanobubbles[J]. ACS Nano, 2019, 13(6): 6141-6144.
31 Luo L, White H S. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes[J]. Langmuir, 2013, 29(35): 11169-11175.
32 Chen Q J, Luo L, Faraji H, et al. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(20): 3539-3544.
33 Chen Q J, Wiedenroth H S, German S R, et al. Electrochemical nucleation of stable N2 nanobubbles at Pt nanoelectrodes[J]. Journal of the American Chemical Society, 2015, 137(37): 12064-12069.
34 Ren H, German S R, Edwards M A, et al. Electrochemical generation of individual O2 nanobubbles via H2O2 oxidation[J]. The Journal of Physical Chemistry Letters, 2017, 8(11): 2450-2454.
35 Ren H, Edwards M A, Wang Y F, et al. Electrochemically controlled nucleation of single CO2 nanobubbles via formate oxidation at Pt nanoelectrodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(4): 1291-1296.
36 German S R, Edwards M A, Ren H, et al. Critical nuclei size, rate, and activation energy of H2 gas nucleation[J]. Journal of the American Chemical Society, 2018, 140(11): 4047-4053.
37 Soto Á M, German S R, Ren H, et al. The nucleation rate of single O2 nanobubbles at Pt nanoelectrodes[J]. Langmuir, 2018, 34(25): 7309-7318.
38 Bentley C L, Edmondson J, Meloni G N, et al. Nanoscale electrochemical mapping[J]. Analytical Chemistry, 2019, 91(1): 84-108.
39 Wang Y F, Gordon E, Ren H. Mapping the nucleation of H2 bubbles on polycrystalline Pt via scanning electrochemical cell microscopy[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3887-3892.
40 Che Z, Theodorakis P E. Formation, dissolution and properties of surface nanobubbles [J]. Journal of Colloid and Interface Science, 2017, 487: 123-129.
41 Liu Y W, Zhang X R. Molecular dynamics simulation of nanobubble nucleation on rough surfaces[J]. The Journal of Chemical Physics, 2017, 146(16): 164704.
42 Xiao Q X, Liu Y W, Guo Z J, et al. Solvent exchange leading to nanobubble nucleation: a molecular dynamics study[J]. Langmuir, 2017, 33(32): 8090-8096.
43 Liu Y W, Edwards M A, German S R, et al. The dynamic steady state of an electrochemically generated nanobubble[J]. Langmuir, 2017, 33(8): 1845-1853.
44 Liu H B, Pan L M, Wen J. Numerical simulation of hydrogen bubble growth at an electrode surface[J]. The Canadian Journal of Chemical Engineering, 2016, 94(1): 192-199.
45 Wu C J, Chu K C, Sheng Y J, et al. Sliding dynamic behavior of a nanobubble on a surface[J]. The Journal of Physical Chemistry C, 2017, 121(33): 17932-17940.
46 Liu Y W, Zhang X R. Nanobubble stability induced by contact line pinning[J]. The Journal of Chemical Physics, 2013, 138(1): 014706.
47 Okitsu K, Suzuki T, Takenaka N, et al. Acoustic multibubble cavitation in water:   a new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry[J]. The Journal of Physical Chemistry B, 2006, 110(41): 20081-20084.
48 Brotchie A, Statham T, Zhou M F, et al. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases[J]. Langmuir, 2010, 26(15): 12690-12695.
49 van Limbeek M A J, Seddon J R T. Surface nanobubbles as a function of gas type[J]. Langmuir, 2011, 27(14): 8694-8699.
50 Yang J W, Duan J M, Fornasiero D, et al. Kinetics of CO2 nanobubble formation at the solid/water interface[J]. Physical Chemistry Chemical Physics, 2007, 9(48): 6327.
51 Fang C K, Ko H C, Yang C W, et al. Nucleation processes of nanobubbles at a solid/water interface[J]. Sci. Rep., 2016, 6: 24651.
52 Hasan M N, Rabbi K F, Mukut K M, et al. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: effect of solid-liquid interfacial wettability[C]// 7th Bsme International Conference on Thermal Engineering. Dhaka, Bangladesh, 2017.
53 Ye Y M, Klimchuk S, Shang M W, et al. Acoustic bubble suppression by constructing a hydrophilic coating on HDPE surface[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16944-16950.
54 Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. Journal of the American Chemical Society, 2014, 136(28): 10053-10061.
55 Lu Z Y, Zhu W, Yu X Y, et al. Ultrahigh hydrogen evolution performance of under-water“superaerophobic”MoS2 nanostructured electrodes[J]. Advanced Materials, 2014, 26(17): 2683-2687.
56 Chen Q J, Ranaweera R, Luo L. Hydrogen bubble formation at hydrogen-insertion electrodes[J]. The Journal of Physical Chemistry C, 2018, 122(27): 15421-15426.
57 German S R, Edwards M A, Chen Q J, et al. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions[J]. Faraday Discussions, 2016, 193: 223-240.
58 Rooze J, Rebrov E V, Schouten J C, et al. Dissolved gas and ultrasonic cavitation — a review[J]. Ultrasonics Sonochemistry, 2013, 20(1): 1-11.
59 Xiao W, Zhao Y L, Yang J, et al. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface[J]. Langmuir, 2019, 35(28): 9239-9245.
60 Yasui K, Tuziuti T, Izu N, et al. Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation?[J]. Ultrasonics Sonochemistry, 2019, 52: 13-18.
61 Ashokkumar M, Hodnett M, Zeqiri B, et al. Acoustic emission spectra from 515 kHz cavitation in aqueous solutions containing surface-active solutes[J]. Journal of the American Chemical Society, 2007, 129(8): 2250-2258.
62 Lee J, Kentish S, Ashokkumar M. Effect of surfactants on the rate of growth of an air bubble by rectified diffusion[J]. The Journal of Physical Chemistry B, 2005, 109(30): 14595-14598.
63 Fernández D, Maurer P, Martine M, et al. Bubble formation at a gas-evolving microelectrode[J]. Langmuir, 2014, 30(43): 13065-13074.
64 Fatemi N, Devos C, de Cordt G, et al. Effect of sodium dodecyl sulfate on the continuous crystallization in microfluidic devices using microbubbles[J]. Chemical Engineering & Technology, 2019, 42(10): 2105-2112.
65 Zhang M M, Seddon J R T. Nanobubble-nanoparticle interactions in bulk solutions[J]. Langmuir, 2016, 32(43): 11280-11286.
66 Xiao W, Wang X X, Zhou L M, et al. Influence of mixing and nanosolids on the formation of nanobubbles[J]. The Journal of Physical Chemistry B, 2019, 123(1): 317-323.
67 Olszok V, Rivas-Botero J, Wollmann A, et al. Particle-induced nanobubble generation for material-selective nanoparticle flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592: 124576.
68 Borkent B M, Dammer S M, Schönherr H, et al. Superstability of surface nanobubbles[J]. Physical Review Letters, 2007, 98(20): 204502.
69 Seddon J R, Kooij E S, Poelsema B, et al. Surface bubble nucleation stability[J]. Physical Review Letters, 2011, 106(5): 056101.
70 Sun Y J, Xie G Y, Peng Y L, et al. Stability theories of nanobubbles at solid-liquid interface: a review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495: 176-186.
71 Das S, Snoeijer J H, Lohse D. Effect of impurities in description of surface nanobubbles[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(5): 056310.
72 Guo Z J, Wang X, Zhang X R. Stability of surface nanobubbles without contact line pinning[J]. Langmuir, 2019, 35(25): 8482-8489.
73 Uchida T, Liu S, Enari M, et al. Effect of NaCl on the lifetime of micro- and nanobubbles[J]. Nanomaterials, 2016, 6(2): E31.
74 Meegoda J N, Hewage S A, Batagoda J H. Application of the diffused double layer theory to nanobubbles[J]. Langmuir, 2019, 35(37): 12100-12112.
75 Zhang H G, Guo Z J, Zhang X R. Surface enrichment of ions leads to the stability of bulk nanobubbles[J]. Soft Matter, 2020, 16(23): 5470-5477.
76 Zhang X H, Chan D Y C, Wang D Y, et al. Stability of interfacial nanobubbles[J]. Langmuir, 2013, 29(4): 1017-1023.
77 Liu Y, Wang J, Zhang X, et al. Contact line pinning and the relationship between nanobubbles and substrates[J]. The Journal of Chemical Physics, 2014, 140(5): 054705.
78 Liu Y W, Zhang X R. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation[J]. The Journal of Chemical Physics, 2014, 141(13): 134702.
79 Lohse D, Zhang X H. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, 2015, 91(3): 031003.
80 Shin D, Park J B, Kim Y J, et al. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells[J]. Nature Communications, 2015, 6: 6068.
81 Wang Y F, Luo X M, Qin W Q, et al. New insights into the contact angle and formation process of nanobubbles based on line tension and pinning[J]. Applied Surface Science, 2019, 481: 1585-1594.
82 German S R, Chen Q J, Edwards M A, et al. Electrochemical measurement of hydrogen and nitrogen nanobubble lifetimes at Pt nanoelectrodes[J]. Journal of the Electrochemical Society, 2016, 163(4): H3160-H3166.
83 Chen Q J, Liu Y W, Edwards M A, et al. Nitrogen bubbles at Pt nanoelectrodes in a nonaqueous medium: oscillating behavior and geometry of critical nuclei[J]. Analytical Chemistry, 2020, 92(9): 6408-6414.
84 Shang D W, Zhang X P, Zeng S J, et al. Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption[J]. Green Chemistry, 2017, 19(4): 937-945.
85 Feng J P, Zeng S J, Feng J Q, et al. CO2 electroreduction in ionic liquids: a review[J]. Chinese Journal of Chemistry, 2018, 36(10): 961-970.
86 王均凤, 聂毅, 王斌琦, 等. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846.
Wang J F, Nie Y, Wang B Q, et al. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846.
87 Taylor S F R, Brittle S A, Desai P, et al. Factors affecting bubble size in ionic liquids[J]. Physical Chemistry Chemical Physics, 2017, 19(22): 14306-14318.
88 Qin K, Wang K, Luo R, et al. Dispersion of supercritical carbon dioxide to [Emim][BF4] with a T-junction tubing connector[J]. Chemical Engineering and Processing - Process Intensification, 2018, 127: 58-64.
89 张香平, 曾少娟, 冯佳奇, 等. CO2化工: 离子微环境调控的CO2绿色高效转化[J]. 中国科学: 化学, 2020, 50(2): 282-298.
Zhang X P, Zeng S J, Feng J Q, et al. CO2 chemical engineering: CO2 green conversion enhanced by ionic liquid microhabitat[J]. Scientia Sinica (Chimica), 2020, 50(2): 282-298.
90 Feng J P, Zeng S J, Liu H Z, et al. Insights into carbon dioxide electroreduction in ionic liquids: carbon dioxide activation and selectivity tailored by ionic microhabitat[J]. ChemSusChem, 2018, 11(18): 3191-3197.
91 Zhao X, Ranaweera R, Luo L. Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration[J]. Chemical Communications, 2019, 55(10): 1378-1381.
92 Chew E K, Lee K Y, Lau E V. The role of carbon chain length in the attachment between microbubbles and aqueous solutions of ionic liquid[J]. Journal of Colloid and Interface Science, 2017, 506: 452-459.
93 冯建朋, 张香平, 尚大伟, 等. 离子液体中电化学还原CO2研究评述与展望[J]. 化工学报, 2018, 69(1): 69-75.
Feng J P, Zhang X P, Shang D W, et al. Review and prospect of CO2 electro-reduction in ionic liquids[J]. CIESC Journal, 2018, 69(1): 69-75.
[1] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[2] 杨光, 程鑫, 王峥, 王晔, 张良俊, 吴静怡. 微纳多孔结构中稀薄气体流动渗透率的解析型预测模型[J]. 化工学报, 2022, 73(7): 2895-2901.
[3] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[4] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[5] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[6] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[7] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[8] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[9] 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873.
[10] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[11] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[12] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[13] 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
[14] 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261.
[15] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!