化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4527-4538.DOI: 10.11949/0438-1157.20220628
靳卓1(), 王永洪1,2(), 张新儒1,2, 白雪1, 李晋平1,2
收稿日期:
2022-05-05
修回日期:
2022-07-28
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
王永洪
作者简介:
靳卓(1996—),女,硕士研究生,jin15535108261@163.com
基金资助:
Zhuo JIN1(), Yonghong WANG1,2(), Xinru ZHANG1,2, Xue BAI1, Jinping LI1,2
Received:
2022-05-05
Revised:
2022-07-28
Online:
2022-10-05
Published:
2022-11-02
Contact:
Yonghong WANG
摘要:
为了获得高性能的CO2/N2分离膜,把空气中氧刻蚀的二硫化钼(a-MoS2)和金属有机框架材料MIP-202通过机械力化学反应制备的双功能填料作为分散相,聚醚嵌段酰胺(Pebax-1657)作为连续相,采用溶液浇铸法制备了Pebax/a-MoS2/MIP-202混合基质膜。采用FT-IR表征了填料的化学结构,借助ATR-FTIR、SEM、TG和力学性能测试表征了混合基质膜的化学结构、微观形貌结构、热稳定性和物理力学性能。研究了水含量、双功能填料配比、含量、膜两侧压差和操作温度对膜气体分离性能的影响,并考察了模拟烟道气(CO2/N2体积比15/85)条件下混合基质膜的长时间运行稳定性。结果表明:在温度为25℃、膜两侧压差为0.1 MPa的操作条件下,a-MoS2与MIP-202质量比为5∶5和双功能填料含量为6%(质量)时,膜的气体分离性能达到最优,CO2渗透性和CO2/N2选择性分别为380 Barrer和124.7,超过了2019年McKeown等提出的上限值。连续测试360 h后,混合基质膜的性能没有明显降低,其平均CO2渗透性和CO2/N2选择性分别为358 Barrer和120.1。这主要是由于a-MoS2和MIP-202协同提高了膜的气体分离性能。
中图分类号:
靳卓, 王永洪, 张新儒, 白雪, 李晋平. Pebax/a-MoS2/MIP-202混合基质膜的制备及CO2分离性能[J]. 化工学报, 2022, 73(10): 4527-4538.
Zhuo JIN, Yonghong WANG, Xinru ZHANG, Xue BAI, Jinping LI. Preparation of Pebax/a-MoS2/MIP-202 mixed matrix membranes for CO2 separation[J]. CIESC Journal, 2022, 73(10): 4527-4538.
Membranes | Loading/%(mass) | Decomposition step/℃ | Tmax/℃ | Tonset/℃ | Td5/℃ | Td10/℃ |
---|---|---|---|---|---|---|
Pebax | 0 | 353—462 | 419 | 353 | 360 | 380 |
Pebax/a-MoS2/MIP-202 MMMs | 2 | 353—455 | 415 | 353 | 357 | 375 |
6 | 345—448 | 413 | 345 | 352 | 368 | |
8 | 338—448 | 411 | 338 | 345 | 367 |
表1 膜的热重表征参数
Table 1 Thermogravimetric characteristic parameters of the membranes
Membranes | Loading/%(mass) | Decomposition step/℃ | Tmax/℃ | Tonset/℃ | Td5/℃ | Td10/℃ |
---|---|---|---|---|---|---|
Pebax | 0 | 353—462 | 419 | 353 | 360 | 380 |
Pebax/a-MoS2/MIP-202 MMMs | 2 | 353—455 | 415 | 353 | 357 | 375 |
6 | 345—448 | 413 | 345 | 352 | 368 | |
8 | 338—448 | 411 | 338 | 345 | 367 |
图5 a-MoS2与MIP-202的配比(a)和含量(b)对膜气体分离性能的影响
Fig.5 Effect of the mass ratio of a-MoS2 to MIP-202 (a) and loading (b) on the gas separation performance of the membranes
图10 Pebax/a-MoS2/MIP-202-6混合基质膜的稳定性及与文献报道的混合基质膜对比
Fig.10 The stability of Pebax/a-MoS2/MIP-202-6 MMMs and comparison with reported MMMs in the literature
图11 Pebax/a-MoS2/MIP-202-6混合基质膜气体分离性能的增量及与上限对比
Fig.11 Enhancement of gas separation performance of Pebax/a-MoS2/MIP-202-6 MMMs and comparison with upper bound
1 | Singh G, Lee J, Karakoti A, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49(13): 4360-4404. |
2 | Song Z N, Qiu F, Zaia E W, et al. Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation[J]. Nano Letters, 2017, 17(11): 6752-6758. |
3 | Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624. |
4 | Bahamon D, Vega L F. Systematic evaluation of materials for post-combustion CO2 capture in a temperature swing adsorption process[J]. Chemical Engineering Journal, 2016, 284: 438-447. |
5 | Granite E J, O'Brien T. Review of novel methods for carbon dioxide separation from flue and fuel gases[J]. Fuel Processing Technology, 2005, 86(14/15): 1423-1434. |
6 | Merkel T C, Lin H Q, Wei X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139. |
7 | Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions[J]. Progress in Polymer Science, 2014, 39(5): 817-861. |
8 | Shen Y J, Wang H X, Zhang X, et al. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23371-23378. |
9 | Liu Y C, Chen C Y, Lin G S, et al. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement[J]. Journal of Membrane Science, 2019, 582: 358-366. |
10 | Lv D F, Chen J Y, Yang K X, et al. Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework[J]. Chemical Engineering Journal, 2019, 375: 122074. |
11 | Sarfraz M, Ba-Shammakh M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas[J]. Journal of Membrane Science, 2016, 514: 35-43. |
12 | Sarfraz M, Ba-Shammakh M. Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 154-162. |
13 | Castarlenas S, Téllez C, Coronas J. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids[J]. Journal of Membrane Science, 2017, 526: 205-211. |
14 | Sarfraz M, Ba Shammakh M. Pursuit of efficient CO2-capture membranes: graphene oxide- and MOF-integrated Ultrason® membranes[J]. Polymer Bulletin, 2018, 75(11): 5039-5059. |
15 | Feijani E A, Mahdavi H, Tavassoli A. Synthesis and gas permselectivity of CuBTC-GO-PVDF mixed matrix membranes[J]. New Journal of Chemistry, 2018, 42(14): 12013-12023. |
16 | Wang Y H, Zhou Y, Zhang X R, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189. |
17 | Wu J, Li H, Yin Z Y, et al. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air[J]. Small, 2013, 9(19): 3314-3319. |
18 | Yu N N, Wang L, Li M, et al. Molybdenum disulfide as a highly efficient adsorbent for non-polar gases[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(17): 11700-11704. |
19 | Huang G J, Isfahani A P, Muchtar A, et al. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture[J]. Journal of Membrane Science, 2018, 565: 370-379. |
20 | Diab K E, Salama E, Hassan H S, et al. Biocompatible MIP-202 Zr-MOF tunable sorbent for cost-effective decontamination of anionic and cationic pollutants from waste solutions[J]. Scientific Reports, 2021, 11: 6619. |
21 | Khademi S, Zahmatkesh S, Aghili A, et al. Tungstic acid (H4WO5) immobilized on magnetic-based zirconium amino acid metal-organic framework: an efficient heterogeneous Brønsted acid catalyst for l-(4-phenyl)-2,4-dihydropyrano[2,3c]pyrazole derivatives preparation[J]. Applied Organometallic Chemistry, 2021, 35(5): e6192. |
22 | Cao W, Zhang Y, Shi Z, et al. Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles[J]. Chemical Engineering Journal, 2021, 417: 128112. |
23 | Song C F, Li R, Fan Z C, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238: 116500. |
24 | Huang D D, Xin Q P, Ni Y Z, et al. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation[J]. RSC Advances, 2018, 8(11): 6099-6109. |
25 | Wu H, Li X Q, Li Y F, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465: 78-90. |
26 | Dong L L, Chen M Q, Li J, et al. Metal-organic framework-graphene oxide composites: a facile method to highly improve the CO2 separation performance of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 801-811. |
27 | Jia M M, Feng Y, Qiu J H, et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation[J]. Separation and Purification Technology, 2019, 213: 63-69. |
28 | Liu G Z, Cheng L, Chen G N, et al. Pebax-based membrane filled with two-dimensional Mxene nanosheets for efficient CO2 Capture[J]. Chemistry-An Asian Journal, 2020, 15(15): 2364-2370. |
29 | Cheng L, Song Y Y, Chen H M, et al. g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property[J]. Separation and Purification Technology, 2020, 250: 117200. |
30 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
31 | Comesaña-Gándara B, Chen J, Bezzu C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740. |
32 | Guo F, Li D S, Ding R, et al. Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation[J]. Separation and Purification Technology, 2022, 280: 119803. |
33 | Yang K, Dai Y, Ruan X H, et al. Stretched ZIF-8@GO flake-like fillers via pre-Zn(Ⅱ)-doping strategy to enhance CO2 permeation in mixed matrix membranes[J]. Journal of Membrane Science, 2020, 601: 117934. |
34 | Hasan M R, Paseta L, Malankowska M, et al. Synthesis of ZIF-94 from recycled mother liquors: study of the influence of its loading on postcombustion CO2 capture with Pebax based mixed matrix membranes[J]. Advanced Sustainable Systems, 2022, 6(1): 2100317. |
35 | Tang P H, So P B, Li W H, et al. Carbon dioxide enrichment PEBAX/MOF composite membrane for CO2 separation[J]. Membranes, 2021, 11(6): 404. |
36 | Zheng W J, Ding R, Yang K, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214: 111-119. |
[1] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[2] | 裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
[3] | 彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698. |
[4] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
[5] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[6] | 肖习羽, 李青松, 吴俊文, 李国新, 陈国元. VUV/UV/NaClO工艺降解百里香酚协同效应及活性物质贡献[J]. 化工学报, 2022, 73(5): 2233-2241. |
[7] | 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614. |
[8] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[9] | 王冠宇, 朱玲君, 周劲松, 王树荣. 基于组分协同效应的造纸厂固体废弃物热解特性研究[J]. 化工学报, 2022, 73(1): 393-401. |
[10] | 王结祥, 关磊, 叶松寿, 郑进保, 陈秉辉. 氮杂环有机催化CO2环加成反应:咪唑环的弱协同效应[J]. 化工学报, 2021, 72(7): 3696-3705. |
[11] | 范洪刚, 赵丹丹, 顾菁, 王亚琢, 袁浩然, 陈勇. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
[12] | 孙晓明, 沙琪昊, 王陈伟, 周道金. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975-6001. |
[13] | 王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
[14] | 周毅,王永洪,张新儒,李晋平. PEBA/氮硫共掺杂多孔碳球混合基质膜的制备及CO2分离性能研究[J]. 化工学报, 2021, 72(10): 5237-5246. |
[15] | 李建惠, 兰天昊, 陈杨, 杨江峰, 李立博, 李晋平. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 279
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||