化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1389-1402.doi: 10.11949/0438-1157.20211358

• 材料化学工程与纳米技术 • 上一篇    下一篇

APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究

毛恒(),王月,王森,刘伟民,吕静,陈甫雪,赵之平()   

  1. 北京理工大学化学与化工学院,北京 102488
  • 收稿日期:2021-09-22 修回日期:2021-11-24 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 赵之平 E-mail:maoheng@bit.edu.cn;zhaozp@bit.edu.cn
  • 作者简介:毛恒(1989—),男,博士,maoheng@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(21736001);中国博士后科学基金项目(2020M670165)

APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation

Heng MAO(),Yue WANG,Sen WANG,Weimin LIU,Jing LYU,Fuxue CHEN,Zhiping ZHAO()   

  1. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
  • Received:2021-09-22 Revised:2021-11-24 Published:2022-03-15 Online:2022-03-14
  • Contact: Zhiping ZHAO E-mail:maoheng@bit.edu.cn;zhaozp@bit.edu.cn

摘要:

渗透汽化(PV)膜分离是一种高效节能、无污染的化工分离技术,在有机废水处理领域的应用潜力巨大。以3-氨丙基三乙氧基硅烷(APTES)改性二维ZIF-L(AZLs),将其引入聚醚嵌段酰胺(PEBA)内制备AZLs/PEBA混合基质膜,用于分离水溶液中的苯酚。系统表征了所制膜的微结构与物化特性,考察了APTES添加量、AZLs填充量、操作温度、料液浓度等对膜分离性能的影响。结果表明:AZLs均匀分散在PEBA基质中,表明两者具有良好的界面相容性。AZLs的加入使得膜疏水性增强而表面自由能降低,从而提高了PEBA膜的选择性。当分离80℃、1000 mg/kg苯酚水溶液时,AZLs/PEBA膜总通量可达2046 g/(m2·h),分离因子为25.4,并且具有一定的稳定性。所制AZLs/PEBA混合基质膜在含酚废水处理方面具有应用前景。

关键词: 膜, 分离, 废水, 聚醚嵌段酰胺, 金属有机框架材料, 混合基质膜, 渗透汽化, 苯酚

Abstract:

As an efficient, energy-saving, and pollution-free chemical separation technology, pervaporation(PV) has great application potential for organic wastewater treatment. In this study, the AZLs were synthesized by modifying two-dimensional ZIF-L with 3-aminopropyltriethoxysilane(APTES). The AZLs were incorporated into the poly(ether-block-amide)(PEBA) to prepare AZLs/PEBA mixed matrix membranes for phenol separation from aqueous solution. The membrane microstructures and physicochemical properties were characterized in detail. Effects of the APTES addition amount, AZLs loading, operating temperature, and feed concentration on separation performance of the membranes were investigated. The AZLs were uniformly dispersed within PEBA matrix, indicating their good interfacial compatibility. The addition of AZLs increased the hydrophobicity and reduced the surface free energy of PEBA membrane, thereby enhancing membrane selectivity. The AZLs/PEBA membrane had a total flux of 2046 g/(m2·h) and a separation factor of 25.4 in separating 1000 mg/kg phenol aqueous solution at 80℃. The AZLs/PEBA membrane also displayed a certain stability. The as-prepared AZLs/PEBA mixed matrix membranes were promising candidates in the phenolic wastewater treatment.

Key words: membrane, separation, wastewater, poly(ether-block-amide), metal-organic frameworks, mixed matrix membranes, pervaporation, phenol

中图分类号: 

  • TQ 028.8

图1

APTES与ZIF-L之间的相互作用(a)和AZLs/PEBA混合基质膜的制备(b)"

图2

ZIF-L(a)、 AZLs-0.25(b)、 AZLs-0.5(c)、 AZLs-0.75 (d)和AZLs-1.0 (e)的SEM图像"

图3

AZLs的XRD谱图(a)、水接触角(b)、氮气吸附等温线(c)和孔径分布曲线(d)"

图4

PEBA膜(a)、 ZIF-L/PEBA-20 (b)、 AZLs-0.25/PEBA-20 (c)、 AZLs-0.5/PEBA-20 (d)、 AZLs-0.75/PEBA-20 (e)和AZLs-1.0/PEBA-20 (f)的表面SEM图像"

图5

PEBA膜(a)、 ZIF-L/PEBA-20 (b)、 AZLs-0.25/PEBA-20 (c)、 AZLs-0.5/PEBA-20 (d)、 AZLs-0.75/PEBA-20 (e)和AZLs-1.0/PEBA-20 (f)的断面SEM图像"

图6

PEBA和AZLs-X/PEBA-20膜的XRD谱图(a)和应力-应变曲线(b)"

表1

PEBA和AZLs-X/PEBA-20膜的物化性质"

样品分离层厚度/μm表面自由能/(mN/m)断裂强度/MPa最大伸长率/%弹性模量/MPa
PEBA膜18.646.52.1±0.3548±2398.0±4.5
ZIF-L/PEBA-2019.437.36.9±0.2990±34146.0±6.3
AZLs-0.25/PEBA-2016.734.88.0±0.41088±57161.0±8.7
AZLs-0.5/PEBA-2020.530.56.8±0.5726±43188.0±5.7
AZLs-0.75/PEBA-2024.133.47.6±0.6891±62136.0±7.3
AZLs-1.0/PEBA-2025.335.16.1±0.61047±48124.0±9.5

图7

PEBA和AZLs-X/PEBA-20膜的水接触角(a)和溶剂吸附量(b)"

图8

不同填料对AZLs/PEBA膜分离性能的影响:渗透通量和分离因子(a);渗透性和选择性(b)(操作条件:填料量,20%(质量);苯酚浓度,1000 mg/kg;料液温度,50℃)"

图9

AZLs-0.5填充量对AZLs-0.5/PEBA膜分离性能的影响:渗透通量和分离因子(a);渗透性和选择性 (b)(操作条件:苯酚浓度,1000 mg/kg;料液温度,50℃)"

图10

料液温度对AZLs-0.5/PEBA-20膜分离性能的影响:渗透通量和分离因子(a),渗透性和选择性(b);AZLs-0.5/PEBA-20膜(c)和PEBA膜(d)的lnJ-l/T关系(操作条件:苯酚浓度,1000 mg/kg)"

表2

PEBA和AZLs-0.5/PEBA-20膜内分子渗透能量分析"

样品EA,i /( kJ/ mol)ΔHevp,i (80 oC) /( kJ/ mol)EP,i /( kJ/mol)
苯酚苯酚苯酚
PEBA膜45.3134.2554.6741.63-9.36-7.38
AZLs-0.5/PEBA-2043.3227.94-11.35-13.69

图11

料液浓度对AZLs-0.5/PEBA-20膜分离性能的影响:(a)渗透通量和分离因子;(b)渗透性和选择性(操作条件:料液温度,80℃)"

图12

AZLs-0.5/PEBA-20膜的长时稳定性测试"

表3

不同渗透汽化膜分离苯酚水溶液分离性能对比"

温度/

浓度/

%(质量)

总通量/

(g/(m2?h))

分离因子PSI文献
PDMS701370217400[34]
PEBA-4033602350237700[35]
6016202011780[36]
PERVAP-10606026840634200[35]
OA-PDMS700.53206.31696[37]
ZSM-5/PDMS800.0115904.55565[38]
Polyimide7013707.52405[39]
PIM-1701210163150[40]
PEBA-2533700.180052.641280[1]
800.114302534320[41]
PU/ZSM-ECD800.39809.38134[42]
PUCD70370493360[43]
PEBA/PVDF800.16560952480[3]
AZLs/PEBA700.1136222.329011本文
800.1204625.449922
1 Cao X T, Wang K A, Feng X S. Removal of phenolic contaminants from water by pervaporation[J]. Journal of Membrane Science, 2021, 623: 119043.
2 Jin M Y, Lin Y Q, Liao Y, et al. Development of highly-efficient ZIF-8@PDMS/PVDF nanofibrous composite membrane for phenol removal in aqueous-aqueous membrane extractive process[J]. Journal of Membrane Science, 2018, 568: 121-133.
3 Khan R, Ul Haq I, Mao H, et al. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution[J]. Separation and Purification Technology, 2021, 256: 117804.
4 Mao H, Li S H, Xu L H, et al. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: crystal evolution and preferential orientation[J]. Journal of Membrane Science, 2021, 638: 119611.
5 Han T T, Xiao Y L, Tong M M, et al. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution[J]. Chemical Engineering Journal, 2015, 275: 134-141.
6 Tian W, Lin J, Zhang H, et al. Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate[J]. Journal of Hazardous Materials, 2021, 408: 124459.
7 齐亚兵, 杨清翠. 煤化工废水脱酚技术研究进展[J]. 应用化工, 2021, 50(5): 1414-1419.
Qi Y B, Yang Q C. Research progress on removal of phenols from coal chemical wastewater[J]. Applied Chemical Industry, 2021, 50(5): 1414-1419.
8 Mao H, Li S H, Zhang A S, et al. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave[J]. Separation and Purification Technology, 2021, 272: 118813.
9 方丽君, 王景梅, 林巧靖, 等. 二苯并-18-冠醚-6/聚醚嵌段酰胺膜富集水中苯酚性能研究[J]. 化工学报, 2021, 72(7): 3716-3727.
Fang L J, Wang J M, Lin Q J, et al. Enrichment of phenol in water by dibenzo-18-crown ether-6/polyether block amide membrane[J]. CIESC Journal, 2021, 72(7): 3716-3727.
10 Ji Y, Chen G, Liu G, et al. Ultrathin membranes with a polymer/nanofiber interpenetrated structure for high-efficiency liquid separations[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36717-36726.
11 Yang D C, Tian D X, Xue C, et al. Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery[J]. Nano Letters, 2018, 18(10): 6150-6156.
12 牟春霞, 张时雨, 邹昀, 等. 疏水SiO2填充PDMS膜分离水中乙酸正丁酯的性能[J]. 化工学报, 2017, 68(6): 2407-2414.
Mu C X, Zhang S Y, Zou Y, et al. Separation of n-butyl acetate from aqueous solution using PDMS membrane filled with hydrophobic SiO2 [J]. CIESC Journal, 2017, 68(6): 2407-2414.
13 Xu S, Zhang H, Yu F, et al. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90[J]. Separation and Purification Technology, 2018, 206: 80-89.
14 Wang H, Liu Y L, Li J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges[J]. Advanced Materials, 2020, 32(44): 2002603.
15 Jayaramulu K, Geyer F, Schneemann A, et al. Hydrophobic metal-organic frameworks[J]. Advanced Materials, 2019, 31(32): 1900820.
16 Liu Q, Li Y, Li Q, et al. Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures[J]. Separation and Purification Technology, 2019, 214: 2-10.
17 Zhang A S, Li S H, Ahmad A, et al. Coordinate covalent grafted ILs-modified MIL-101/PEBA membrane for pervaporation: adsorption simulation and separation characteristics[J]. Journal of Membrane Science, 2021, 619: 118807.
18 Wang H, Tang S H, Ni Y X, et al. Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes[J]. Journal of Membrane Science, 2020, 598: 117791.
19 Chen R Z, Yao J F, Gu Q F, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption[J]. Chemical Communications, 2013, 49(82): 9500.
20 王艳芳, 毛恒, 蔡玮玮, 等. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236.
Wang Y F, Mao H, Cai W W, et al. Enhancing ethanol production efficiency by ZIF-L/PDMS mixed matrix membrane via vapor permeation-fermentation coupling process[J]. CIESC Journal, 2021, 72(10): 5226-5236.
21 Mao H, Zhen H G, Ahmad A, et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation[J]. Journal of Membrane Science, 2019, 582: 307-321.
22 Li Q Q, Cheng L, Shen J, et al. Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler[J]. Separation and Purification Technology, 2017, 178: 105-112.
23 Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8): 1741-1747.
24 路姣姣, 毛恒, 王涛, 等. HNTs填充PDMS膜的制备及其分离ABE-水体系的研究[J]. 膜科学与技术, 2020, 40(1): 53-63.
Lu J J, Mao H, Wang T, et al. Preparation of HNTs filled PDMS membranes for the separation of ABE from aqueous solution[J]. Membrane Science and Technology, 2020, 40(1): 53-63.
25 Kulkarni S S, Kittur A A, Aralaguppi M I, et al. Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isopropanol mixtures[J]. Journal of Applied Polymer Science, 2004, 94(3): 1304-1315.
26 Wang S F, Mahalingam D, Sutisna B, et al. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration[J]. Journal of Materials Chemistry A, 2019, 7(19): 11673-11682.
27 Pan F, Cheng Q, Jia H, et al. Facile approach to polymer–inorganic nanocomposite membrane through a biomineralization-inspired process[J]. Journal of Membrane Science, 2010, 357: 171-177.
28 Liu S N, Liu G P, Shen J, et al. Fabrication of MOFs/PEBA mixed matrix membranes and their application in bio-butanol production[J]. Separation and Purification Technology, 2014, 133: 40-47.
29 Kolokolov D I, Stepanov A G, Jobic H. Mobility of the 2-methylimidazolate linkers in ZIF-8 probed by 2H NMR: saloon doors for the guests[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27512-27520.
30 Khan A, Ali M, Ilyas A, et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation[J]. Separation and Purification Technology, 2018, 206: 50-58.
31 Feng X S, Huang R Y M. Estimation of activation energy for permeation in pervaporation processes[J]. Journal of Membrane Science, 1996, 118(1): 127-131.
32 Liu W P, Li Y F, Meng X X, et al. Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance[J]. Journal of Materials Chemistry A, 2013, 1(11): 3713.
33 Wang X L, Chen J X, Fang M Q, et al. ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution[J]. Separation and Purification Technology, 2016, 163: 39-47.
34 Wu P, Field R W, England R, et al. A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams[J]. Journal of Membrane Science, 2001, 190(2): 147-157.
35 Kujawski W, Warszawski A, Ratajczak W, et al. Application of pervaporation and adsorption to the phenol removal from wastewater[J]. Separation and Purification Technology, 2004, 40(2): 123-132.
36 Böddeker K W, Bengtson G, Bode E. Pervaporation of low volatility aromatics from water[J]. Journal of Membrane Science, 1990, 53(1/2): 143-158.
37 Ye H, Yan X, Zhang X, et al. Pervaporation properties of oleyl alcohol-filled polydimethylsiloxane membranes for the recovery of phenol from wastewater[J]. Iranian Polymer Journal, 2017, 26(8): 639-649.
38 Li D, Yao J, Sun H, et al. Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane[J]. Applied Surface Science, 2018, 427: 288-297.
39 Pithan F, Staudt-Bickel C. Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation[J]. ChemPhysChem, 2003, 4(9): 967-973.
40 Budd P, Elabas E, Ghanem B, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459.
41 Hao X G, Pritzker M, Feng X S. Use of pervaporation for the separation of phenol from dilute aqueous solutions[J]. Journal of Membrane Science, 2009, 335(1/2): 96-102.
42 Ye H, Zhang X, Zhao Z X, et al. Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water[J]. Iranian Polymer Journal, 2017, 26(3): 193-203.
43 Ye H, Wang J, Wang Y, et al. Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes[J]. Iranian Polymer Journal, 2013, 22(8): 623-633.
[1] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[2] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[3] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[4] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[5] 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO3-, SO42--H2O溶液的膜蒸馏结晶耦合过程调控[J]. 化工学报, 2022, 73(7): 3078-3089.
[6] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[7] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[8] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[9] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[10] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[11] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[12] 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193.
[13] 叶枫, 李刚, 付鑫, 郎雪梅, 王燕鸿, 王盛龙, 张建利, 樊栓狮. 多孔膜反应器中丙烷催化脱氢制丙烯的模拟研究[J]. 化工学报, 2022, 73(5): 2008-2019.
[14] 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907.
[15] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!