化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4518-4526.DOI: 10.11949/0438-1157.20220747
收稿日期:
2022-05-26
修回日期:
2022-07-26
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
许松林
作者简介:
柳旭(1996—),女,硕士研究生,xuliu_hg@tju.edu.cn
基金资助:
Xu LIU1(), Songlin XU1(
), Yanfei WANG2
Received:
2022-05-26
Revised:
2022-07-26
Online:
2022-10-05
Published:
2022-11-02
Contact:
Songlin XU
摘要:
在生产杀菌剂嘧菌酯中间体过程中,反应物原甲酸三甲酯(TMOF)与生成物醋酸(HAc)发生共沸,导致反应物堆积和原料损耗。为解决共沸物分离问题,使用Hayden-O'Connell修正的UNIFAC基团贡献法研究其汽液平衡,设计常规萃取精馏(CED)、侧线萃取精馏(SED)、隔壁塔萃取精馏(EDWC)三种工艺,以分离组分摩尔纯度、再沸器热负荷(Q)、年度总费用(TAC)为目标,运用灵敏度耦合箱线图响应面法(S-BBD)对三种工艺参数分别优化。结果表明,优化方法预测值与实际值存在较优拟合关系, CED、SED、EDWC对TAC和Q的预测误差均不超过1%。分离纯度相同时,SED较CED节约10.37%TAC和6.88%热负荷,EDWC较CED节约10.65%TAC和10.53%热负荷,三种工艺方案均可为化工实际生产提供理论基础。
中图分类号:
柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526.
Xu LIU, Songlin XU, Yanfei WANG. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation[J]. CIESC Journal, 2022, 73(10): 4518-4526.
基团 | RK | QK |
---|---|---|
CH— | 0.4469 | 0.228 |
CH3O— | 1.1450 | 1.088 |
CH3— | 0.9011 | 0.848 |
COOH— | 1.3013 | 1.224 |
表1 UNIFAC基团体积RK、表面积参数QK
Table 1 UNIFAC group volume RK and group surface area QK
基团 | RK | QK |
---|---|---|
CH— | 0.4469 | 0.228 |
CH3O— | 1.1450 | 1.088 |
CH3— | 0.9011 | 0.848 |
COOH— | 1.3013 | 1.224 |
基团 | CH— | CH3O— | CH3— | COOH— |
---|---|---|---|---|
CH— | 0 | 251.5 | 0 | 663.5 |
CH3O— | 83.36 | 0 | 83.36 | 664.6 |
CH3— | 0 | 251.5 | 0 | 663.5 |
COOH— | 315.3 | -338.5 | 315.3 | 0 |
表2 UNIFAC基团交互参数
Table 2 Interaction parameters of UNIFAC groups
基团 | CH— | CH3O— | CH3— | COOH— |
---|---|---|---|---|
CH— | 0 | 251.5 | 0 | 663.5 |
CH3O— | 83.36 | 0 | 83.36 | 664.6 |
CH3— | 0 | 251.5 | 0 | 663.5 |
COOH— | 315.3 | -338.5 | 315.3 | 0 |
温度/K | x1 | x2 | y1 | y2 | γ1 | γ2 |
---|---|---|---|---|---|---|
391.581 | 0.98 | 0.02 | 0.99 | 0.01 | 0.9998 | 0.5819 |
391.985 | 0.96 | 0.04 | 0.97 | 0.03 | 0.9990 | 0.5972 |
392.366 | 0.94 | 0.06 | 0.96 | 0.04 | 0.9977 | 0.6128 |
392.721 | 0.92 | 0.08 | 0.94 | 0.06 | 0.9960 | 0.6285 |
393.046 | 0.90 | 0.10 | 0.93 | 0.07 | 0.9936 | 0.6444 |
393.336 | 0.88 | 0.12 | 0.91 | 0.09 | 0.9908 | 0.6605 |
393.589 | 0.86 | 0.14 | 0.89 | 0.11 | 0.9874 | 0.6766 |
393.833 | 0.70 | 0.30 | 0.66 | 0.34 | 0.9399 | 0.8057 |
393.605 | 0.68 | 0.32 | 0.63 | 0.37 | 0.9314 | 0.8215 |
392.557 | 0.62 | 0.38 | 0.52 | 0.48 | 0.9027 | 0.8673 |
389.704 | 0.52 | 0.48 | 0.35 | 0.65 | 0.8452 | 0.9376 |
386.690 | 0.44 | 0.56 | 0.23 | 0.77 | 0.7933 | 0.9856 |
385.882 | 0.42 | 0.58 | 0.21 | 0.79 | 0.7800 | 0.9961 |
374.159 | 0.06 | 0.94 | 0.01 | 0.99 | 0.9008 | 1.0118 |
373.763 | 0.04 | 0.96 | 0.01 | 0.99 | 1.0038 | 1.0060 |
表3 UNIFAC基团贡献法HAc-TMOF汽液平衡数据
Table 3 HAc-TMOF vapor-liqid equilibrium data of UNIFAC group contribution method
温度/K | x1 | x2 | y1 | y2 | γ1 | γ2 |
---|---|---|---|---|---|---|
391.581 | 0.98 | 0.02 | 0.99 | 0.01 | 0.9998 | 0.5819 |
391.985 | 0.96 | 0.04 | 0.97 | 0.03 | 0.9990 | 0.5972 |
392.366 | 0.94 | 0.06 | 0.96 | 0.04 | 0.9977 | 0.6128 |
392.721 | 0.92 | 0.08 | 0.94 | 0.06 | 0.9960 | 0.6285 |
393.046 | 0.90 | 0.10 | 0.93 | 0.07 | 0.9936 | 0.6444 |
393.336 | 0.88 | 0.12 | 0.91 | 0.09 | 0.9908 | 0.6605 |
393.589 | 0.86 | 0.14 | 0.89 | 0.11 | 0.9874 | 0.6766 |
393.833 | 0.70 | 0.30 | 0.66 | 0.34 | 0.9399 | 0.8057 |
393.605 | 0.68 | 0.32 | 0.63 | 0.37 | 0.9314 | 0.8215 |
392.557 | 0.62 | 0.38 | 0.52 | 0.48 | 0.9027 | 0.8673 |
389.704 | 0.52 | 0.48 | 0.35 | 0.65 | 0.8452 | 0.9376 |
386.690 | 0.44 | 0.56 | 0.23 | 0.77 | 0.7933 | 0.9856 |
385.882 | 0.42 | 0.58 | 0.21 | 0.79 | 0.7800 | 0.9961 |
374.159 | 0.06 | 0.94 | 0.01 | 0.99 | 0.9008 | 1.0118 |
373.763 | 0.04 | 0.96 | 0.01 | 0.99 | 1.0038 | 1.0060 |
NT | R | NF | S | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
25~35 | 0.4~1.0 | 9~13 | 0.8~1.6 | 4~8 | 20~30 | 6~12 | 2.5~3.5 |
表4 CED灵敏度分析工艺参数范围
Table 4 CED sensitivity analysis process parameters range and results
NT | R | NF | S | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
25~35 | 0.4~1.0 | 9~13 | 0.8~1.6 | 4~8 | 20~30 | 6~12 | 2.5~3.5 |
NT | S | R | NF | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
34 | 1.02 | 0.40 | 13 | 6 | 20 | 7 | 2.50 |
表5 CED工艺参数优化结果
Table 5 CED process parameters optimization results
NT | S | R | NF | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
34 | 1.02 | 0.40 | 13 | 6 | 20 | 7 | 2.50 |
N1 | R1 | NA | S1 | N | L/(kmol/h) | NL | N2 | NA′ | R2 |
---|---|---|---|---|---|---|---|---|---|
36~40 | 0.4~0.6 | 8~10 | 1.0~1.2 | 5~7 | 80~100 | 30~34 | 16~20 | 6~10 | 1.4~2.5 |
表6 SED灵敏度分析工艺参数范围
Table 6 Process parameters range and results of SED sensitivity analysis
N1 | R1 | NA | S1 | N | L/(kmol/h) | NL | N2 | NA′ | R2 |
---|---|---|---|---|---|---|---|---|---|
36~40 | 0.4~0.6 | 8~10 | 1.0~1.2 | 5~7 | 80~100 | 30~34 | 16~20 | 6~10 | 1.4~2.5 |
N1 | S1 | R1 | N | NA | L/(kmol/h) | NL | N2 | R2 | |
---|---|---|---|---|---|---|---|---|---|
37 | 1.01 | 0.42 | 7 | 8 | 83 | 31 | 17 | 6 | 1.47 |
表7 SED工艺参数优化结果
Table 7 Optimization results of SED process parameters
N1 | S1 | R1 | N | NA | L/(kmol/h) | NL | N2 | R2 | |
---|---|---|---|---|---|---|---|---|---|
37 | 1.01 | 0.42 | 7 | 8 | 83 | 31 | 17 | 6 | 1.47 |
NM | RW | NW | SW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38~40 | 0.3~0.5 | 9~11 | 0.85~1.00 | 5~7 | 60~70 | 28~30 | 16~20 |
表8 EDWC灵敏度分析工艺参数范围与结果
Table 8 Process parameters range and results of EDWC sensitivity analysis
NM | RW | NW | SW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38~40 | 0.3~0.5 | 9~11 | 0.85~1.00 | 5~7 | 60~70 | 28~30 | 16~20 |
NM | SW | RW | NW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38 | 0.88 | 0.38 | 11 | 6 | 65 | 29 | 18 |
表9 EDWC工艺参数优化结果
Table 9 Optimization results of EDWC process parameters
NM | SW | RW | NW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38 | 0.88 | 0.38 | 11 | 6 | 65 | 29 | 18 |
工艺 | 响应值 | 平方和 | 自由度 | 均方 | F值 | R2 |
---|---|---|---|---|---|---|
CED | TMOF 摩尔纯度 | 3.00×10-4 | 44 | 7.11×10-6 | 46.16 | 0.96 |
HAc 摩尔纯度 | 3.60×10-3 | 1.00×10-4 | 18.86 | 0.92 | ||
NMP 摩尔纯度 | 1.00×10-4 | 3.24×10-6 | 21.46 | 0.93 | ||
TAC | 5.90×1011 | 1.34×1010 | 9.84 | 0.85 | ||
Q | 8.24×106 | 1.03×106 | 74.75 | 0.85 | ||
SED | TMOF 摩尔纯度 | 8.00×10-4 | 65 | 0 | 13.32 | 0.89 |
HAc 摩尔纯度 | 7.00×10-3 | 1.00×10-4 | 6.91 | 0.81 | ||
NMP 摩尔纯度 | 7.00×10-4 | 0 | 7.92 | 0.83 | ||
TAC | 3.38×1011 | 5.20×109 | 337.24 | 0.99 | ||
Q | 4.65×106 | 7.15×104 | 344.64 | 0.99 | ||
EDWC | TMOF 摩尔纯度 | 2.00×10-4 | 44 | 4.19×10-6 | 21.84 | 0.97 |
HAc 摩尔纯度 | 1.00×10-3 | 0 | 20.45 | 0.97 | ||
NMP 摩尔纯度 | 0 | 5.49×10-7 | 78.61 | 0.99 | ||
TAC | 5.97×1010 | 1.36×109 | 10.80 | 0.94 | ||
Q | 7.08×105 | 1.61×104 | 11.28 | 0.94 |
表11 BBD响应面优化结果
Table 11 Optimization results of BBD response surface
工艺 | 响应值 | 平方和 | 自由度 | 均方 | F值 | R2 |
---|---|---|---|---|---|---|
CED | TMOF 摩尔纯度 | 3.00×10-4 | 44 | 7.11×10-6 | 46.16 | 0.96 |
HAc 摩尔纯度 | 3.60×10-3 | 1.00×10-4 | 18.86 | 0.92 | ||
NMP 摩尔纯度 | 1.00×10-4 | 3.24×10-6 | 21.46 | 0.93 | ||
TAC | 5.90×1011 | 1.34×1010 | 9.84 | 0.85 | ||
Q | 8.24×106 | 1.03×106 | 74.75 | 0.85 | ||
SED | TMOF 摩尔纯度 | 8.00×10-4 | 65 | 0 | 13.32 | 0.89 |
HAc 摩尔纯度 | 7.00×10-3 | 1.00×10-4 | 6.91 | 0.81 | ||
NMP 摩尔纯度 | 7.00×10-4 | 0 | 7.92 | 0.83 | ||
TAC | 3.38×1011 | 5.20×109 | 337.24 | 0.99 | ||
Q | 4.65×106 | 7.15×104 | 344.64 | 0.99 | ||
EDWC | TMOF 摩尔纯度 | 2.00×10-4 | 44 | 4.19×10-6 | 21.84 | 0.97 |
HAc 摩尔纯度 | 1.00×10-3 | 0 | 20.45 | 0.97 | ||
NMP 摩尔纯度 | 0 | 5.49×10-7 | 78.61 | 0.99 | ||
TAC | 5.97×1010 | 1.36×109 | 10.80 | 0.94 | ||
Q | 7.08×105 | 1.61×104 | 11.28 | 0.94 |
1 | Venkatesan V, Viswanathan K S. Conformations of trimethoxymethane: matrix isolation infrared and ab initio studies[J]. Journal of Molecular Structure, 2010, 973(1/2/3): 89-95. |
2 | Teloxa S F, Kennington S C D, Camats M, et al. Direct, enantioselective, and nickel(Ⅱ) catalyzed reactions of N-azidoacetyl thioimides with trimethyl orthoformate: a new combined methodology for the rapid synthesis of lacosamide and derivatives[J]. Chemistry - A European Journal, 2020, 26(50): 11540-11548. |
3 | Kariofillis S K, Shields B J, Tekle-Smith M A, et al. Nickel/photoredox-catalyzed methylation of (hetero)aryl chlorides using trimethyl orthoformate as a methyl radical source[J]. Journal of the American Chemical Society, 2020, 142(16): 7683-7689. |
4 | Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts[J]. Nature, 2017, 551(7682): 605-608. |
5 | Balba H. Review of strobilurin fungicide chemicals[J]. Journal of Environmental Science and Health, Part B, 2007, 42(4): 441-451. |
6 | 许标. 3-(α-甲氧基)甲烯基苯并呋喃-2(3H)-酮的合成[J]. 山东化工, 2017, 46(17): 42-43. |
Xu B. Synthesis of 3-(α-methoxy) methylenebezofuran-2(3H)-ketone[J]. Shandong Chemical Industry, 2017, 46(17): 42-43. | |
7 | 杨朋. 杀菌剂嘧菌酯的合成和工艺优化[D]. 杭州: 浙江工业大学, 2013. |
Yang P. Process optimization on the synthesis of fungicide azoxystrobin[D]. Hangzhou: Zhejiang University of Technology, 2013. | |
8 | 刘长庆, 徐小兵, 黄显超, 等. 一种甲氧基苯并呋喃酮的分离提纯工艺: 109651316A[P]. 2019-04-19. |
Liu C Q, Xu X B, Huang X C, et al. Separation and purification process of methoxyl benzofuranone: 109651316A[P]. 2019-04-19. | |
9 | 黄显超, 徐小兵, 程伟家, 等. 一种甲氧基苯并呋喃酮的合成方法: 109678825A[P]. 2019-04-26. |
Huang X C, Xu X B, Cheng W J, et al. Synthesis method of methoxybenzofuranone: 109678825A[P]. 2019-04-26. | |
10 | Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE Journal, 1975, 21(6): 1086-1099. |
11 | Wittig R, Lohmann J, Gmehling J. Vapor-liquid equilibria by UNIFAC group contribution.6. Revision and extension[J]. Industrial & Engineering Chemistry Research, 2003, 42(1): 183-188. |
12 | Kamesh R, Kumari A, Rani K Y. Measurements, correlations, and modified UNIFAC predictions of isobaric vapor-liquid equilibrium data for the binary system of dimethyl carbonate + anisole at different pressures[J]. Journal of Chemical & Engineering Data, 2021, 66(10): 3788-3801. |
13 | 张莘, 高伟, 齐鸣, 等. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(S1): 1-9. |
Zhang S, Gao W, Qi M, et al. A review of optimization rectification systems based on multi-objective[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 1-9. | |
14 | Weerachaipichasgul W, Wanwongka A, Saengdaw S, et al. Response surface methodology to evaluate energy in extractive distillation process for the mixture of methylal and methanol with glycerol as entrainer[J]. Journal of Engineering Science and Technology, 2021, 16(5): 4235-4249. |
15 | 杨涛, 李肖, 宁阳坤, 等. 双塔精馏回收环己醇工艺模拟与优化[J]. 现代化工, 2017, 37(8): 195-199. |
Yang T, Li X, Ning Y K, et al. Simulation and optimization of cyclohexanol recovery by twin towers distillation[J]. Modern Chemical Industry, 2017, 37(8): 195-199. | |
16 | 肖武, 李明月, 阮雪华, 等. 响应面法优化一水硫酸氢钠流化催化精馏生产乙酸乙酯工艺条件[J]. 化工学报, 2014, 65(11): 4465-4471. |
Xiao W, Li M Y, Ruan X H, et al. Optimization of ethyl acetate process conditions for sodium bisulfate fluidized catalytic distillation using response surface methodology[J]. CIESC Journal, 2014, 65(11): 4465-4471. | |
17 | Liang J, Wang H H, Wang Z, et al. Optimal separation of acetonitrile and pyridine from industrial wastewater[J]. Chemical Engineering Research and Design, 2021, 169: 54-65. |
18 | 黄国强, 靳权. 隔壁精馏塔的设计、模拟与优化[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1057-1064. |
Huang G Q, Jin Q. Design, simulation and optimization of divided wall column[J]. Journal of Tianjin University(Science and Technology), 2014, 47(12): 1057-1064. | |
19 | Patrut C, Udrea E C, Bildea C S. Sepation of water-acetic acid mixtures by cyclic distillation[J]. Chemistry and Materials Science, 2018, 80(4): 49-66. |
20 | Bishop K, O'Connell J P. Aqueous cross second virial coefficients with the correlation[J]. Industrial & Engineering Chemistry Research, 2005, 44(3): 630-633. |
21 | 魏静, 解新安, 丁年平, 等. UNIFAC基团贡献法研究及应用进展[J]. 当代化工, 2008, 37(6): 659-665. |
Wei J, Xie X N, Ding N P, et al. The development of research and applications for UNIFAC group contribution method[J]. Contemporary Chemical Industry, 2008, 37(6): 659-665. | |
22 | 郭天民, 钟银珠, 李再琮. 四种活度系数模型在汽液平衡和精馏计算中的应用和比较[J]. 化工学报, 1980, 31(2): 173-190. |
Guo T M, Zhong Y Z, Li Z C. The application and comparison of four activity coefficient models in vapor-liquid equilibrium and distillation calculations[J]. Journal of Chemical Industry and Engineering (China), 1980, 31(2): 173-190. | |
23 | 商文砚. 以离子液体为萃取剂萃取精馏分离甲醇-乙酸甲酯共沸物[D]. 天津: 天津大学, 2019. |
Shang W Y. Extractive distillation for azeotropic mixture of methanol and methyl acetate with ionic liquids as solvent[D]. Tianjin: Tianjin University, 2019. | |
24 | Shan B M, Zheng Q, Chen Z R, et al. Dynamic control and performance comparison of conventional and dividing wall extractive distillation for benzene/isopropanol/water separation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128: 73-86. |
25 | 张莉平. 醋酸废水萃取精馏研究[D]. 杭州: 浙江大学, 2020. |
Zhang L P. Study on the extractive distillation of acetic acid wastewater[D]. Hangzhou: Zhejiang University, 2020. | |
26 | 王萌萌, 吴莉莉, 陈学梅. N-甲基吡咯烷酮分离醋酸-水体系微观机理分析[J].化学工程与装备, 2016(7): 21-26. |
Wang M M, Wu L L, Chen X M. Microscopic mechanism analysis of N-methylpyrrolidone separation system of acetic acid-water[J]. Chemical Engineering & Equipment, 2016(7): 21-26. | |
27 | 平丽娟, 彭勇, 毛建卫. 26.67kPa下醋酸-水-N-甲基吡咯烷酮体系汽液相平衡的研究[J]. 高校化学工程学报, 2011, 25(4): 554-558. |
Ping L J, Peng Y, Mao J W. Vapor-liquid equilibria of acetic acid-water-N-methylpyrrolidone system at 26.67kPa[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(4): 554-558. | |
28 | You X Q, Gu J L, Peng C J, et al. Optimal design of extractive distillation for acetic acid dehydration with N-methyl acetamide[J]. Chemical Engineering and Processing-Process Intensification, 2017, 120: 301-316. |
29 | Cui F G, Cui C T, Sun J S. Simultaneous optimization of heat-integrated extractive distillation with a recycle feed using pseudo transient continuation models[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15423-15436. |
30 | Luyben W L. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation[J]. Computer & Chemical Engineering, 2013, 50: 1-7. |
31 | Wang C, Guang C, Cui Y, et al. Compared novel thermally coupled extractive distillation sequences for separating multi-azotropic mixture of acetonitrile/benzene/methanol[J]. Chemical Engineering Research and Design, 2018, 136: 513-528. |
32 | 叶贞成, 倪泽雨, 程辉. 一种改进的分隔壁精馏塔简捷计算方法[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 26-34. |
Ye Z C, Ni Z Y, Cheng H. An improved shortcut design method for dividing wall column[J]. Journal of East China University of Science and Technology, 2021, 47(1): 26-34. | |
33 | Ling H, Qiu J, Hua T, et al. Remixing analysis of four-product dividing-wall columns[J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367. |
34 | Yu H, Ye Q, Xu H, et al. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384-3397. |
[1] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[9] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[10] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[11] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[12] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[13] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[14] | 王雪松, 曾祥宇, 薄翠梅, 汤舒淇, 董超, 李俊, 张泉灵, 金晓明, 叶胜利. PTFE间歇聚合反应过程变周期动态经济优化控制[J]. 化工学报, 2022, 73(9): 3973-3982. |
[15] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 394
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||