化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3696-3705.DOI: 10.11949/0438-1157.20210051
收稿日期:
2021-01-10
修回日期:
2021-04-09
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
陈秉辉
作者简介:
王结祥(1985—),男,博士,基金资助:
WANG Jiexiang1,2(),GUAN Lei2,YE Songshou1,ZHENG Jinbao1,CHEN Binghui1()
Received:
2021-01-10
Revised:
2021-04-09
Online:
2021-07-05
Published:
2021-07-05
Contact:
CHEN Binghui
摘要:
稳定的CO2 需要高能分子的活化,如环氧化物。而亲核试剂有助于诱发三元氧环的开环,进而实现CO2的插入活化。针对聚苯乙烯负载的有机催化剂,考察不同含氮杂环材料在催化CO2环加成中的活性差异,发现五元氮杂环显示出了高于六元氮杂环的催化活性,五元氮杂环对底物间弱的协同效应是诱发环氧丙烷开环和活化CO2插入的关键。进而与引入ZnCl2、烷基胺的聚苯乙烯负载型催化剂作对比,虽然后两者反应速率得以提高,但也造成了选择性的下降。在无金属、无卤素、无添加剂、无溶剂下,PS-Im这种简单、廉价、稳定且可回收利用的聚苯乙烯负载氮杂环材料适合于工业推广。
中图分类号:
王结祥, 关磊, 叶松寿, 郑进保, 陈秉辉. 氮杂环有机催化CO2环加成反应:咪唑环的弱协同效应[J]. 化工学报, 2021, 72(7): 3696-3705.
WANG Jiexiang, GUAN Lei, YE Songshou, ZHENG Jinbao, CHEN Binghui. N-Heterocyclic organocatalyst for carbon dioxide cycloaddition: weak synergistic effect of imidazolium[J]. CIESC Journal, 2021, 72(7): 3696-3705.
图5 PS-N应用于CO2环加成反应[反应条件:PO 15ml,PCO2 4 MPa(初始压力),催化剂 1.5 g(其中,Mim 0.5 g,约为PS-Mim活性组分用量的3倍),T=100℃, t=10 h]
Fig.5 CO2 cycloaddition catalyzed by PS-N series
Entry | Temp./℃ | Cat.∶PO | Initial pressure/MPa | Time/h | PC yield/% | PC selectivity/% |
---|---|---|---|---|---|---|
1 | 80 | 1.5 g∶15 ml | 4 | 10 | 59.2 | 98.8 |
2 | 100 | 1.5 g∶15 ml | 4 | 10 | 81.3 | 99.0 |
3 | 120 | 1.5 g∶15 ml | 4 | 10 | 97.4 | 99.5 |
4 | 140 | 1.5 g∶15 ml | 4 | 10 | 99.8 | 99.3 |
5 | 120 | 3.0 g∶30 ml | 4 | 10 | 95.3 | 99.5 |
6 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.6 | 99.6 |
7 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.1 | 99.8 |
表1 PS-Im用于CO2环加成反应的条件优化
Table 1 Reaction condition optimization for PS-Im to catalyzed CO2 cycloaddition
Entry | Temp./℃ | Cat.∶PO | Initial pressure/MPa | Time/h | PC yield/% | PC selectivity/% |
---|---|---|---|---|---|---|
1 | 80 | 1.5 g∶15 ml | 4 | 10 | 59.2 | 98.8 |
2 | 100 | 1.5 g∶15 ml | 4 | 10 | 81.3 | 99.0 |
3 | 120 | 1.5 g∶15 ml | 4 | 10 | 97.4 | 99.5 |
4 | 140 | 1.5 g∶15 ml | 4 | 10 | 99.8 | 99.3 |
5 | 120 | 3.0 g∶30 ml | 4 | 10 | 95.3 | 99.5 |
6 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.6 | 99.6 |
7 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.1 | 99.8 |
图11 PS-Im上咪唑环对反应底物CO2和PO间可能的弱协同催化示意图
Fig.11 Plausible schematic diagram of a weak cooperative catalysis between imidazole and substrates (CO2 and propylene oxide) on PS-Im
Catalyst | Reaction time/h | Yield/% | Selectivity/% |
---|---|---|---|
PS-Mim | 10 | 62.5 | 98.1 |
PS-Mim-ZnCl2 | 7 | 97.1 | 92.5 |
PS-Im | 10 | 97.4 | 99.0 |
PS-Im-Ep-TEPA | 8 | 98.7 | 94.6 |
表2 聚苯乙烯负载系列用于CO2环加成反应
Table 2 CO2 cycloaddition catalyzed by PS-supported series
Catalyst | Reaction time/h | Yield/% | Selectivity/% |
---|---|---|---|
PS-Mim | 10 | 62.5 | 98.1 |
PS-Mim-ZnCl2 | 7 | 97.1 | 92.5 |
PS-Im | 10 | 97.4 | 99.0 |
PS-Im-Ep-TEPA | 8 | 98.7 | 94.6 |
1 | Dang S S, Yang H Y, Gao P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330: 61-75. |
2 | Li Z L, Qu Y Z, Wang J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
3 | 周柒, 丁红蕾, 郭得通, 等. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
Zhou Q, Ding H L, Guo D T, et al. Recent advances in catalytic methods of CO2 hydrogenation to clean energy[J]. CIESC Journal, 2020, 71(8): 3428-3443. | |
4 | Tortajada A, Juliá-Hernández F, Börjesson M, et al. Transition-metal-catalyzed carboxylation reactions with carbon dioxide[J]. Angewandte Chemie International Edition, 2018, 57(49): 15948-15982. |
5 | Gao J, Song Q W, He L N, et al. Preparation of polystyrene-supported Lewis acidic Fe(Ⅲ) ionic liquid and its application in catalytic conversion of carbon dioxide[J]. Tetrahedron, 2012, 68(20): 3835-3842. |
6 | Yang C K, Chen Y L, Xu P, et al. Facile synthesis of zinc halide-based ionic liquid for efficient conversion of carbon dioxide to cyclic carbonates[J]. Molecular Catalysis, 2020, 480: 110637. |
7 | Ren W M, Liu Y, Lu X B. Bifunctional aluminum catalyst for CO2 fixation: regioselective ring opening of three-membered heterocyclic compounds[J]. The Journal of Organic Chemistry, 2014, 79(20): 9771-9777. |
8 | Chen Y, Qiu R H, Xu X H, et al. Organoantimony and organobismuth complexes for CO2 fixation[J]. RSC Advances, 2014, 4(23): 11907-11918. |
9 | Chen Y L, Xu P, Arai M, et al. Cycloaddition of carbon dioxide to epoxides for the synthesis of cyclic carbonates with a mixed catalyst of layered double hydroxide and tetrabutylammonium bromide at ambient temperature[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 335-344. |
10 | Sperandio C, Rodriguez J, Quintard A. Organocatalytic carbon dioxide fixation to epoxides by perfluorinated 1, 3, 5-triols catalysts[J]. Organic & Biomolecular Chemistry, 2020, 18(14): 2637-2640. |
11 | Zhang Q, Yu P, Lei B, et al. Efficient solvent-free synthesis of cyclic carbonates from the cycloaddition of carbon dioxide and epoxides catalyzed by new imidazolinium functionalized metal complexes under 0.1 MPa[J]. Catalysis Letters, 2020, 150(9): 2537-2548. |
12 | 刘宁, 陈飞, 陶晟. 氢键给体促进有机催化的CO2与环氧化物的环加成反应[J]. 科学通报, 2020, 65(31): 3373-3388. |
Liu N, Chen F, Tao S. Hydrogen bond donors promoted organocatalyzed cycloaddition of CO2 with epoxides[J]. Chinese Science Bulletin, 2020, 65(31): 3373-3388. | |
13 | Han L N, Choi H J, Choi S J, et al. Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide[J]. Green Chemistry, 2011, 13(4): 1023. |
14 | Watile R A, Deshmukh K M, Dhake K P, et al. Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst[J]. Catalysis Science & Technology, 2012, 2(5): 1051. |
15 | Liu N, Xie Y F, Wang C, et al. Cooperative multifunctional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8(11): 9945-9957. |
16 | Wu X, Chen C T, Guo Z Y, et al. Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ACS Catalysis, 2019, 9(3): 1895-1906. |
17 | Hao Y H, Yuan D, Yao Y M. Metal-free cycloaddition of epoxides and carbon dioxide catalyzed by triazole-bridged bisphenol[J]. ChemCatChem, 2020, 12(17): 4346-4351. |
18 | Sainz Martinez A, Hauzenberger C, Sahoo A R, et al. Continuous conversion of carbon dioxide to propylene carbonate with supported ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13131-13139. |
19 | Yingcharoen P, Kongtes C, Arayachukiat S, et al. Assessing the pKa-dependent activity of hydroxyl hydrogen bond donors in the organocatalyzed cycloaddition of carbon dioxide to epoxides: experimental and theoretical study[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 366-373. |
20 | Léonard G L M, Pirard S L, Belet A, et al. Optimizing support properties of heterogeneous catalysts for the coupling of carbon dioxide with epoxides[J]. Chemical Engineering Journal, 2019, 371: 719-729. |
21 | Luo R C, Chen M, Liu X Y, et al. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites[J]. Journal of Materials Chemistry A, 2020, 8(36): 18408-18424. |
22 | 赵朝阳, 罗小燕, 裴宝有, 等. 多孔超交联聚合物固载离子液体催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2021, 40(3): 1438-1448. |
Zhao Z Y, Luo X Y, Pei B Y, et al. Research progress on CO2 cycloaddition catalyzed by porous hyper-crosslinked polymers immobilized ionic liquids[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1438-1448. | |
23 | Luo R C, Liu X Y, Chen M, et al. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates[J]. ChemSusChem, 2020, 13(16): 3945-3966. |
24 | Subramanian S, Oppenheim J, Kim D, et al. Catalytic non-redox carbon dioxide fixation in cyclic carbonates[J]. Chem, 2019, 5(12): 3232-3242. |
25 | Liu M S, Zhao P H, Gu Y Q, et al. Squaramide functionalized ionic liquids with well-designed structures: highly-active and recyclable catalyst platform for promoting cycloaddition of CO2 to epoxides[J]. Journal of CO2 Utilization, 2020, 37: 39-44. |
26 | Ma Y, Zhang Y, Chen C, et al. Insight on asym-pyrazolium ionic liquids for chemical fixation of CO2 and propylene epoxide into propylene carbonate without organic solvent and metal[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13342-13352. |
27 | Demberelnyamba D, Yoon S J, Lee H. New epoxide molten salts: key intermediates for designing novel ionic liquids[J]. Chemistry Letters, 2004, 33(5): 560-561. |
28 | Zhu J, McKinney M A, Wilkie C A. Stabilization of polystyrene by Friedel-Crafts chemistry: effect of position of alcohol and the catalyst[J]. Polymer Degradation and Stability, 1999, 66(2): 213-220. |
29 | Darensbourg D J, Yarbrough J C, Ortiz C, et al. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production[J]. Journal of the American Chemical Society, 2003, 125(25): 7586-7591. |
30 | Rana S, White P, Bradley M. Influence of resin cross-linking on solid-phase chemistry[J]. Journal of Combinatorial Chemistry, 2001, 3(1): 9-15. |
31 | D'Alessandro D, Smit B, Long J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
32 | Yue C T, Wang W L, Li F W. Building N-heterocyclic carbene into triazine-linked polymer for multiple CO2 utilization[J]. ChemSusChem, 2020, 13(22): 5996-6004. |
33 | Mujmule R B, Raghav Rao M P, Rathod P V, et al. Synergistic effect of a binary ionic liquid/base catalytic system for efficient conversion of epoxide and carbon dioxide into cyclic carbonates[J]. Journal of CO2 Utilization, 2019, 33: 284-291. |
34 | Bocarsly A B, Gibson Q D, Morris A J, et al. Comparative study of imidazole and pyridine catalyzed reduction of carbon dioxide at illuminated iron pyrite electrodes[J]. ACS Catalysis, 2012, 2(8): 1684-1692. |
35 | Li F W, Xiao L F, Xia C G, et al. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system[J]. Tetrahedron Letters, 2004, 45(45): 8307-8310. |
[1] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[2] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[14] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[15] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||