化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3688-3698.DOI: 10.11949/0438-1157.20220263
收稿日期:
2022-03-01
修回日期:
2022-04-22
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
白羽,孙克宁
作者简介:
彭琳(1997—),女,博士研究生,penglin_bp@163.com基金资助:
Lin PENG(), Mingxin NIU(), Yu BAI(), Kening SUN()
Received:
2022-03-01
Revised:
2022-04-22
Online:
2022-08-05
Published:
2022-09-06
Contact:
Yu BAI, Kening SUN
摘要:
锂硫电池凭借高理论能量密度和高理论比容量的优势成为极具发展前景的储能设备。然而,单质硫和硫化锂的绝缘性、放电过程中产生的体积膨胀及多硫化物溶解导致的“穿梭效应”等问题,限制其商业化发展。为解决上述问题,采用低温液相法合成中空硫球(HS),通过水热法制备纳米花状MoS2/还原氧化石墨烯(MoS2/rGO),随后将MoS2/rGO包覆在HS表面获得HS-MoS2/rGO复合正极材料。利用XRD、SEM、TEM、XPS等对该材料的晶体结构、形貌等性质进行表征,采用循环伏安法、交流阻抗法以及恒流充放电对复合正极进行电化学测试。研究表明,MoS2/rGO对多硫化物具有强吸附能力和高催化活性,能够有效限制多硫化物的穿梭;同时硫球的中空结构能够缓解体积膨胀,保持正极结构稳定。HS-MoS2/rGO正极展现出优异的倍率性能和循环稳定性。
中图分类号:
彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698.
Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries[J]. CIESC Journal, 2022, 73(8): 3688-3698.
图5 MoS2/rGO的TEM图、HRTEM图和HAADF-STEM图及相应的元素分布
Fig.5 TEM image, HRTEM image and HAADF-STEM image and the corresponding EDS elemental analysis image of MoS2/rGO
图8 rGO和MoS2/rGO的可视化吸附实验(a)及相应的紫外-可见吸收光谱(b)
Fig.8 Visual adsorption experiments of rGO and MoS2/rGO (a) and corresponding ultraviolet/visible absorption spectra (b)
图10 HS-MoS2/rGO和HS-rGO的循环伏安曲线和电化学阻抗谱图(插图为拟合电路图)
Fig.10 CV curves and Nyquist plots of HS-MoS2/rGO and HS-rGO with the equivalent fitting circuit inside
电极 | Re/Ω | Rct/Ω |
---|---|---|
HS-MoS2/rGO | 2.35 | 30.09 |
HS-rGO | 2.46 | 40.49 |
表1 HS-MoS2/rGO和HS-rGO电池EIS结果对比
Table 1 The EIS results of HS-MoS2/rGO and HS-rGO electrodes
电极 | Re/Ω | Rct/Ω |
---|---|---|
HS-MoS2/rGO | 2.35 | 30.09 |
HS-rGO | 2.46 | 40.49 |
1 | Yi Y Y, Yu L H, Tian Z N, et al. Biotemplated synthesis of transition metal nitride architectures for flexible printed circuits and wearable energy storages[J]. Advanced Functional Materials, 2018, 28(50): 1805510. |
2 | Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
3 | He J R, Luo L, Chen Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(34): 1702707. |
4 | Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
5 | Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288. |
6 | Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. |
7 | Shi H F, Lv W, Zhang C, et al. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up[J]. Advanced Functional Materials, 2018, 28(38): 1800508. |
8 | Jiao L, Zhang C, Geng C N, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(19): 1900219. |
9 | Pang Q, Liang X, Kwok C Y, et al. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1: 16132. |
10 | He J R, Chen Y F, Lv W Q, et al. From metal-organic framework to Li2S@C-Co-N nanoporous architecture: a high-capacity cathode for lithium-sulfur batteries[J]. ACS Nano, 2016, 10(12): 10981-10987. |
11 | Bhargav A, He J R, Gupta A, et al. Lithium-sulfur batteries: attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291. |
12 | Yuan Z, Peng H J, Huang J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6105-6112. |
13 | Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices[J]. Advanced Materials, 2016, 28(22): 4306-4337. |
14 | Zhang B, Kang F Y, Tarascon J M, et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science, 2016, 76: 319-380. |
15 | Zhou G M, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647. |
16 | 杨蓉, 王黎晴, 吕梦妮, 等. 锂硫电池石墨烯/纳米硫复合正极材料的制备及电化学性能[J]. 化工学报, 2016, 67(10): 4363-4369. |
Yang R, Wang L Q, Lyu M N, et al. Preparation and electrochemical properties of graphene/nano-sulfur composite as cathode materials for lithium-sulfur batteries[J]. CIESC Journal, 2016, 67(10): 4363-4369. | |
17 | Wang B, Wang L, Zhang B, et al. Ultrafine zirconium boride nanoparticles constructed bidirectional catalyst for ultrafast and long-lived lithium-sulfur batteries[J]. Energy Storage Materials, 2022, 45: 130-141. |
18 | Chang Z, Dou H, Ding B, et al. Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries[J]. Journal of Materials Chemistry A, 2017, 5(1): 250-257. |
19 | Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312. |
20 | Yang X F, Gao X J, Sun Q, et al. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Advanced Materials, 2019, 31(25): 1901220. |
21 | Zhang Q, Zhang X F, Li M, et al. Sulfur-deficient MoS2- x promoted lithium polysulfides conversion in lithium-sulfur battery: a first-principles study[J]. Applied Surface Science, 2019, 487: 452-463. |
22 | Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527. |
23 | Wang Q, Zhao H Q, Li B Y, et al. MOF-derived Co9S8 nano-flower cluster array modified separator towards superior lithium sulfur battery[J]. Chinese Chemical Letters, 2021, 32(3): 1157-1160. |
24 | Zhang H, Zhao Z B, Hou Y N, et al. Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion[J]. Journal of Materials Chemistry A, 2019, 7(15): 9230-9240. |
25 | Mosavati N, Salley S O, Ng K Y S. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries[J]. Journal of Power Sources, 2017, 340: 210-216. |
26 | Yang S, Xiao R, Hu T Z, et al. Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries[J]. Nano Energy, 2021, 90: 106584. |
27 | Sun R, Bai Y, Luo M, et al. Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries[J]. ACS Nano, 2021, 15(1): 739-750. |
28 | Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707520. |
29 | Balach J, Linnemann J, Jaumann T, et al. Metal-based nanostructured materials for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23127-23168. |
30 | Lim W G, Kim S, Jo C, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics[J]. Angewandte Chemie, 2019, 131(52): 18920-18931. |
31 | Li X Y, Feng S, Zhao M, et al. Surface gelation on disulfide electrocatalysts in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2022, 61(7): e202114671. |
32 | Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20): 1601759. |
33 | Yan B, Li X F, Xiao W, et al. Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects[J]. Journal of Materials Chemistry A, 2020, 8(35): 17848-17882. |
34 | Wang H E, Li X C, Qin N, et al. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator[J]. Journal of Materials Chemistry A, 2019, 7(19): 12068-12074. |
35 | He J R, Hartmann G, Lee M, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries[J]. Energy & Environmental Science, 2019, 12(1): 344-350. |
36 | Yu B, Chen Y F, Wang Z G, et al. 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li-S batteries[J]. Journal of Power Sources, 2020, 447: 227364. |
37 | Huang X, Tang J Y, Luo B, et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(32): 1901872. |
38 | Li Y J, Xu P, Chen G L, et al. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst[J]. Chemical Engineering Journal, 2020, 380: 122595. |
39 | Xu W, Pang H M, Zhou H L, et al. Lychee-like TiO2@TiN dual-function composite material for lithium–sulfur batteries[J]. RSC Advances, 2020, 10(5): 2670-2676. |
40 | Zeng S B, Arumugam G M, Liu X H, et al. Encapsulation of sulfur into N-doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode[J]. Small, 2020, 16(39): 2001027. |
41 | Ni L B, Wu Z, Zhao G J, et al. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries[J]. Small, 2017, 13(14): 1603466. |
42 | Mo Y X, Lin J X, Wu Y J, et al. Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: a conductive cathode with suppressed shuttling effect for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4065-4073. |
43 | Zhang L, Chen Z X, Dongfang N C, et al. Nickel-cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li-S batteries[J]. Advanced Energy Materials, 2018, 8(35): 1802431. |
44 | Zhang R, Dong Y T, Al-Tahan M A, et al. Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 60: 85-94. |
45 | Li Z T, Deng S Z, Xu R F, et al. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: synthetic effect between 2D components[J]. Electrochimica Acta, 2017, 252: 200-207. |
46 | Li F, Li J, Cao Z, et al. MoS2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(43): 21772-21778. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[9] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[10] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[11] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||