化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1073-1081.DOI: 10.11949/0438-1157.20221440
何洋1(), 高森虎1, 吴青云1, 张明理1, 龙涛2, 牛佩1, 高景辉1, 孟颖琪1
收稿日期:
2022-11-07
修回日期:
2023-01-31
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
何洋
作者简介:
何洋(1994—),男,硕士,工程师,hylx199498@163.com
Yang HE1(), Senhu GAO1, Qingyun WU1, Mingli ZHANG1, Tao LONG2, Pei NIU1, Jinghui GAO1, Yingqi MENG1
Received:
2022-11-07
Revised:
2023-01-31
Online:
2023-03-05
Published:
2023-04-19
Contact:
Yang HE
摘要:
针对现有冷凝模型计算中未考虑对流传质对传质通量的影响,利用Fluent软件中的UDF建立了新的对流冷凝传热模型和基于场协同理论的传热传质特性分析方法。使用新的冷凝模型和分析方法对除湿条件下,入口参数、翅片结构、开缝位置对平直开缝翅片换热器湿空气侧的流动、传热和传质特性的影响进行了研究。结果表明:考虑对流传质的冷凝模型准确度得到提升;传热量、冷凝量随翅片表面开缝高度的增加先减小后增加;上游开缝翅片管的传热量、冷凝量均低于下游开缝翅片管,利用建立的分析方法发现,相同边界条件下,下游开缝翅片的传热场协同角αm、传质场协同角βm均小于上游开缝翅片,表明下游开缝翅片的速度场、温度梯度场和浓度梯度场的协同性更优,传热传质能力更强。
中图分类号:
何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081.
Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions[J]. CIESC Journal, 2023, 74(3): 1073-1081.
参数 | 平直开缝翅片 | 平直翅片 |
---|---|---|
管外径 d/mm | 7.2 | 7.2 |
管壁厚 δ1/mm | 0.3 | 0.3 |
翅片间距 S/mm | 1.5 | 1.5 |
翅片厚度 δ2/mm | 0.105 | 0.105 |
纵向管间距 P1/mm | 12.7 | 12.7 |
横向管间距 P2/mm | 14.4 | 14.4 |
开缝尺寸/(mm×mm) | 4×1 | — |
表1 翅片管换热器主要结构参数
Table 1 Main structural parameters of finned tube heat exchanger
参数 | 平直开缝翅片 | 平直翅片 |
---|---|---|
管外径 d/mm | 7.2 | 7.2 |
管壁厚 δ1/mm | 0.3 | 0.3 |
翅片间距 S/mm | 1.5 | 1.5 |
翅片厚度 δ2/mm | 0.105 | 0.105 |
纵向管间距 P1/mm | 12.7 | 12.7 |
横向管间距 P2/mm | 14.4 | 14.4 |
开缝尺寸/(mm×mm) | 4×1 | — |
1 | Levy E, Bilirgen H, Jeong K, et al. Recovery of water from boiler flue gas final technical report[R]. 20 Fossil-Fueled Power Plants, 2008. |
2 | Reimers A S. Low temperature heat and water recovery from supercritical coal plant flue gas[D]. Austin: The University of Texas at Austin, 2015. |
3 | 李健, 张莉. 湿烟气冷凝换热的数值模拟[J]. 动力工程学报, 2021, 41(2): 129-135, 172. |
Li J, Zhang L. Numerical simulation on condensation heat transfer process of wet flue gas[J]. Journal of Chinese Society of Power Engineering, 2021, 41(2): 129-135, 172. | |
4 | 刘啸东, 陈鸿伟, 朱楼, 等. 有蒸汽凝结的烟气换热规律数值模拟研究[J]. 节能, 2018, 37(10): 125-128. |
Liu X D, Chen H W, Zhu L, et al. Numerical simulation of heat transfer law of flue gas with steam condensation[J]. Energy Conservation, 2018, 37(10): 125-128. | |
5 | 任能, 谷波. 湿工况下平翅片传热传质实验与数值模拟[J]. 化工学报, 2007, 58(7): 1626-1631. |
Ren N, Gu B. Experimental study and numerical simulation of heat and mass transfer on plain fin in wet conditions[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1626-1631. | |
6 | 李建波. 锅炉冷凝式换热器热力计算方法研究[D]. 西安: 西安交通大学, 2016. |
Li J B. Research on thermodynamic calculation method of boiler condensing heat exchanger[D]. Xi'an: Xi'an Jiaotong University, 2016. | |
7 | Croce G C. Convective heat and mass transfer in tube-fin exchangers under dehumidifying conditions[J]. Numerical Heat Transfer, Part A: Applications, 2001, 40(6): 579-599. |
8 | Comini G, Savino S. Latent and sensible heat transfer in air-cooling applications[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(6): 608-627. |
9 | Comini G, Nonino C, Savino S. Modeling of conjugate conduction and heat and mass convection in tube-fin exchangers[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2008, 18(7/8): 954-968. |
10 | Suzzi N, Croce G. Numerical simulation of dropwise condensation over hydrophobic surfaces using vapor-diffusion model[J]. Applied Thermal Engineering, 2022, 214: 118806. |
11 | Benelmir R, Mokraoui S, Souayed A. Numerical analysis of filmwise condensation in a plate fin-and-tube heat exchanger in presence of non-condensable gas[J]. Heat and Mass Transfer, 2009, 45(12): 1561-1573. |
12 | Chu P, He Y L, Tao W Q. Three-dimensional numerical study of flow and heat transfer enhancement using vortex generators in fin-and-tube heat exchangers[J]. Journal of Heat Transfer, 2009, 131(9): 091901. |
13 | He Y L, Tao W Q, Song F Q, et al. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle[J]. International Journal of Heat and Fluid Flow, 2005, 26(3): 459-473. |
14 | Tang L H, Zeng M, Wang Q W. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns[J]. Experimental Thermal and Fluid Science, 2009, 33(5): 818-827. |
15 | 杨宇伟, 阴继翔, 欧龙姣. 椭圆管外含不凝气体的蒸汽凝结传热的数值研究[J]. 科学技术与工程, 2016, 16(5): 71-76. |
Yang Y W, Yin J X, Ou L J. Numerical simulation of vapor condensation with non-condensable gas outside of elliptical pipe[J]. Science Technology and Engineering, 2016, 16(5): 71-76. | |
16 | 宿吉强, 王辉, 孙中宁, 等. 含空气蒸汽冷凝传热特性数值模拟[J]. 化工学报, 2014, 65(9): 3425-3433. |
Su J Q, Wang H, Sun Z N, et al. Numerical simulations for steam condensation in presence of air[J]. CIESC Journal, 2014, 65(9): 3425-3433. | |
17 | Li M J, Zhou W J, Wei J J, et al. 3D numerical simulation of heat and mass transfer of fin-and-tube heat exchanger under dehumidifying conditions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 597-610. |
18 | 唐桂华, 庄正宁, 王建伟, 等. 不凝气体存在时水平单管外膜状凝结换热的数值研究[J]. 西安交通大学学报, 2000, 34(11): 31-35. |
Tang G H, Zhuang Z N, Wang J W, et al. Film condensation heat transfer in the presence of a non-condensable gas[J]. Journal of Xi'an Jiaotong University, 2000, 34(11): 31-35. | |
19 | 沈佳敏, 卢志明, 朱成辉. 空气冷却器开缝翅片传热与流动特性的数值模拟研究[J]. 轻工机械, 2010, 28(5): 28-31. |
Shen J M, Lu Z M, Zhu C H. Numerical simulation on heat transfer and fluid flow chararcteristics of air cooler with strip fin[J]. Light Industry Machinery, 2010, 28(5): 28-31. | |
20 | 刘旗, 柳建华, 徐小进, 等. 湿工况下低气压对翅片管换热器换热特性的影响[J]. 热能动力工程, 2016, 31(11): 7-13, 116. |
Liu Q, Liu J H, Xu X J, et al. Influence of the low atmospheric pressure on the heat exchange characteristics of a finned tube heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(11): 7-13, 116. | |
21 | 王建勋. 影响叉排圆管X型圆弧开缝翅片流动与传热特性参数分析[D]. 兰州: 兰州交通大学, 2016. |
Wang J X. Analysis of the parameter effect on the flow and heat transfer characteristics of a staggered circular tube bank fin heat exchanger with X-type arc slotted fin[D]. Lanzhou: Lanzhou Jiaotong University, 2016. | |
22 | 马小魁, 丁国良, 张圆明. 析湿工况下带亲水层开缝翅片管换热器空气侧传热传质特性[J].化工学报, 2007, 58(8): 1911-1916. |
Ma X K, Ding G L, Zhang Y M. Airside heat and mass transfer characteristics of split fin-and-tube heat exchangers under dehumidifying conditions[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(8): 1911-1916. | |
23 | 孟辉, 晋欣桥, 杜志敏, 等. 开缝翅片管换热器换热和压降特性及其评价方法[J]. 上海交通大学学报, 2009, 43(5): 766-771. |
Meng H, Ji X Q, Du Z M, et al. Measurement method and experimental study on heat transfer and pressure drop characteristics of slit fin-tube heat exchangers[J]. Journal of Shanghai Jiaotong University, 2009, 43(5): 766-771. | |
24 | 屈治国, 何雅玲, 陶文铨. 平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J]. 工程热物理学报, 2003, 24(5): 825-827. |
Qu Z G, He Y L, Tao W Q. 3D numerical simulation on heat transfer performance of slit fin surfacese and analysis with field synergy principle[J]. Journal of Engineering Thermophysics, 2003, 24(5): 825-827. | |
25 | Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer: its extension and numerical verifications[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3849-3856. |
26 | 程伟良, 韩晓娟, 孙宏玉. 质量传递过程中的场协同作用[J]. 中国电机工程学报, 2005, 25(13): 105-108. |
Cheng W L, Han X J, Sun H Y. Field synergy action in mass transfer process[J]. Proceedings of the CSEE, 2005, 25(13): 105-108. | |
27 | Tao W Q, Lue S S. Numerical method for calculation of slotted-fin efficiency in dry conditions[J]. Numerical Heat Transfer, Part A: Applications, 1994, 26(3): 351-362. |
28 | 陶文铨. 数值传热学[M]. 2版.西安:西安交通大学出版社, 2001. |
Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642. |
[3] | 张舒蕾, 李冰杰, 蒋健, 董新宇, 刘璐. 凸面恒温基底上固着液滴蒸发特性研究[J]. 化工学报, 2022, 73(12): 5537-5546. |
[4] | 刘坐东, 李斯琪, 邢维维, 徐志明. 板式换热器Ni-P-TiO2复合纳米镀层微生物污垢特性[J]. 化工学报, 2020, 71(8): 3535-3544. |
[5] | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
[6] | 张毅,张冠敏,冷学礼,屈晓航,田茂诚. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419. |
[7] | 丛健,高蓬辉,张东海,周晋鹏,张正函. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020, 71(11): 5117-5128. |
[8] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[9] | 何洋, 王利民, 唐春丽, 车得福. H型翅片管湿烟气对流冷凝传热的数值模拟研究[J]. 化工学报, 2019, 70(12): 4556-4564. |
[10] | 张斌, 周孑民, 李茂. 双层配碳烧结过程的传热传质分析[J]. 化工学报, 2017, 68(5): 1811-1822. |
[11] | 牛利娇, 王维, 潘思麒, 张大为, 陈国华. 具有预制孔隙多孔介质冷冻干燥的多相传递模型[J]. 化工学报, 2017, 68(5): 1833-1844. |
[12] | 李美军, 路源, 张士杰, 肖云汉. 水平管降膜吸收局部传热传质特性的数值模拟[J]. 化工学报, 2017, 68(4): 1364-1372. |
[13] | 涂耀东, 葛天舒, 王如竹. 吸附除湿换热:弱关联热质耦合传递过程[J]. 化工学报, 2016, 67(S1): 97-102. |
[14] | 蔡骥驰, 王瑞祥, 徐荣吉, 张一灏, 丁思源. SDBS对铜-水脉动热管启动及传热性能影响[J]. 化工学报, 2016, 67(5): 1852-1857. |
[15] | 陈捷超, 李友荣, 于佳佳. 毛细力比为-1时环形液池内双扩散毛细对流数值模拟[J]. 化工学报, 2015, 66(S1): 138-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||