化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1062-1072.DOI: 10.11949/0438-1157.20221426
收稿日期:
2022-11-01
修回日期:
2023-02-21
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
朱兵国
作者简介:
朱兵国(1988—),男,博士,讲师,zhubg@lut.edu.cn
基金资助:
Bingguo ZHU1(), Jixiang HE1, Jinliang XU2, Bin PENG1
Received:
2022-11-01
Revised:
2023-02-21
Online:
2023-03-05
Published:
2023-04-19
Contact:
Bingguo ZHU
摘要:
采用SST k-ω湍流模型,数值计算了冷却条件下超临界压力二氧化碳(SCO2)在三种水平管(等截面管、渐扩管和渐缩管)内的传热特性,研究了不同运行参数(压力、质量流量及热通量)对传热性能的影响。结果表明,与等截面管相比,渐扩管有效地强化了传热,采用渐扩管时,SCO2的总传热系数最大提高了47.98%。然而,相比等截面管,渐缩管却削弱了传热。最后,从类冷凝和湍流场分布的角度阐明了传热强化的物理机理。为SCO2冷却器的优化设计提供了新的思路和理论指导。
中图分类号:
朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072.
Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions[J]. CIESC Journal, 2023, 74(3): 1062-1072.
图12 三种管内SCO2在特征截面处湍流动能的径向分布
Fig.12 The radial distribution of turbulent kinetic energy of SCO2 in three types of tubes at different characteristic cross section
图13 渐扩管顶母线和底母线传热系数随主流温度的变化
Fig.13 The variation of heat transfer coefficient of top busbar and bottom busbar of the diverging tube with bulk fluid temperature
15 | Wang J Y, Guan Z Q, Gurgencia H, et al. Numerical study on cooling heat transfer of turbulent supercritical CO2 in large horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1002-1019. |
16 | Xiang M R, Guo J F, Huai X L, et al. Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J]. The Journal of Supercritical Fluids, 2017, 130: 389-398. |
17 | 刘新新, 叶建, 徐肖肖, 等. 超临界CO2在水平螺旋管内的冷却换热特性[J]. 化工学报, 2016, 67(S2): 120-127. |
Liu X X, Ye J, Xu X X, et al. Heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube[J]. CIESC Journal, 2016, 67(S2): 120-127. | |
18 | Li C, Hao J H, Wang X C, et al. Dual-effect evaluation of heat transfer deterioration of supercritical carbon dioxide in variable cross-section horizontal tubes under heating conditions[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122103. |
19 | Duryodhan V S, Singh A, Singh S G, et al. Convective heat transfer in diverging and converging microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 80: 424-438. |
20 | Bai C, Qiu Y, Leng X L, et al. Diverging/converging small channel for condensation heat transfer enhancement under different gravity conditions[J]. International Communication in Heat and Mass Transfer, 2020, 116: 104714. |
21 | Kumar N, Basu D N. Role of buoyancy on the thermalhydraulic behavior of supercritical carbon dioxide flow through horizontal heated minichannel[J]. International Journal of Thermal Sciences, 2021, 168: 107051. |
22 | Wang H, Leungc L K H, Wang W, et al. A review on recent heat transfer studies to supercritical pressure water in channels[J]. Applied Thermal Engineering, 2018, 142: 573-596. |
23 | Dang C, Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide (Part 1): Experimental measurement[J]. International Journal of Refrigeration, 2004, 27: 736-747. |
24 | Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41: 2221-2225. |
25 | Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48: 1797-1807. |
1 | Goodarzi M, Gheibi A. Performance analysis of a modified trans-critical CO2 refrigeration cycle[J]. Applied Thermal Engineering, 2015, 75: 1118-1125. |
2 | 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130. |
Yang J Z, Yang Z, Duan Y Y. Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 125-130. | |
3 | Cabeza L F, Gracia A, InésFernándezc A, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
4 | 白万金, 徐肖肖, 吴杨杨. 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4): 1244-1250. |
Bai W J, Xu X X, Wu Y Y. Heat transfer characteristics of supercritical CO2 at low mass flux in tube[J]. CIESC Journal, 2016, 67(4): 1244-1250. | |
5 | 相梦如, 郭江峰, 淮秀兰, 等. 超临界压力CO2水平管内冷却换热机理研究[J]. 工程热物理学报, 2017, 38(9): 1929-1934. |
Xiang M R, Guo J F, Huai X L, et al. A study on the cooling heat transfer mechanism for supercritical pressure CO2 in horizontal tube[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1929-1934. | |
6 | Liu Z B, He Y L, Yang Y F, et al. Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube[J]. Applied Thermal Engineering, 2014, 70: 307-315. |
7 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45: 5025-5034. |
8 | Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124: 413-420. |
9 | Huai X L, Koyama S, Zhao T S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science, 2005, 60(12): 3337-3345. |
10 | Oh H, Son C. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes[J]. Experimental Thermal and Fluid Science, 2010, 34: 1230-1241. |
11 | Du Z X, Lin W S, Gu A Z. Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube[J]. Journal of Super-critical Fluids, 2010, 55: 116-121. |
12 | Wang J Y, Guan Z Q, Gurgencia H, et al. A computationally derived heat transfer correlation for in-tube cooling turbulent supercritical CO2 [J]. International Journal of Thermal Sciences, 2019, 138: 190-205. |
13 | Wang J Y, Guan Z Q, Gurgencia H, et al. Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube[J]. Energy Conversion and Management, 2018, 157: 536-548. |
14 | Wang J Y, Li J S, Gurgencia H, et al. Computational investigations on convective flow and heat transfer of turbulent supercritical CO2 cooled in large inclined tubes[J]. Applied Thermal Engineering, 2019, 159: 113922. |
26 | Simeoni G G, Bryk T, Gorelli F A, et al. The Widom line as the cross-over between liquid-like and gas-like behavior in supercritical fluids[J]. Nature Physics, 2010, 6: 503-507. |
27 | Gallo P, Corradini D, Rovere M. Widom line and dynamical crossovers as routes to understand supercritical water[J]. Nature Communications, 2014, 5(1): 1-6. |
28 | Ma X J, Xu J L, Xie J. In-situ phase separation to improve phase change heat transfer performance[J]. Energy, 2021, 230: 120845. |
29 | Kadi K, Alnaimat F, Sherif S A. Recent advances in condensation heat transfer in mini and micro channels: a comprehensive review[J]. Applied Thermal Engineering, 2021, 197: 117412. |
30 | 何吉祥, 朱兵国, 彭斌, 等. 太阳能热发电中超临界压力CO2在渐扩变截面圆管内冷却传热强化机理[J]. 太阳能学报, 2023, DOI:10.19912/j.0254-0096.tynxb.2022-0672 . |
He J X, Zhu B G, Peng B, et al. Cooling heat transfer enhancement mechanism of supercritical pressure CO2 in diverging variable cross-section circular tube in solar thermal power generation[J]. Acta Energiae Solaris Sinica, 2023, DOI:10.19912/j.0254-0096.tynxb.2022-0672 . | |
31 | Liu G X, Huang Y P, Wang J F, et al. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110290. |
32 | Lv Y G, Wen Z X, Li Q, et al. Numerical investigation on thermal hydraulic performance of hybrid wavy channels in a supercritical CO2 precooler[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121891. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[3] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[4] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[5] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[6] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[7] | 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564. |
[8] | 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426. |
[9] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
[10] | 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963. |
[11] | 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545. |
[12] | 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
[13] | 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
[14] | 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
[15] | 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||