1 |
Zhao Y, Cai J Q, Liu Z C, et al. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of β-amyloid aggregates in Alzheimer's disease mice[J]. Nano Letters, 2019, 19(2): 674-683.
|
2 |
Dubey S K, Ram M S, Krishna K V, et al. Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer's disease[J]. Cellular and Molecular Neurobiology, 2019, 39(2): 181-209.
|
3 |
刘伟, 孙彦. β-淀粉样蛋白的聚集及其调控[J]. 化工学报, 2022, 73(6): 2381-2396.
|
|
Liu W, Sun Y. Research progress on amyloid β-protein aggregation and its regulation[J]. CIESC Journal, 2022, 73(6): 2381-2396.
|
4 |
Brookmeyer R, Evans D A, Hebert L, et al. National estimates of the prevalence of Alzheimer's disease in the United States[J]. Alzheimer's & Dementia, 2011, 7(1): 61-73.
|
5 |
Chen X Q, Gao W Q, Sun Y, et al. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. Chinese Journal of Chemical Engineering, 2023, 54: 144-152.
|
6 |
Saleem S. Apoptosis, autophagy, necrosis and their multi galore crosstalk in neurodegeneration[J]. Neuroscience, 2021, 469: 162-174.
|
7 |
Love S, Miners J S. Cerebrovascular disease in ageing and Alzheimer's disease[J]. Acta Neuropathologica, 2016, 131(5): 645-658.
|
8 |
Liu W, Sun X T, Dong X Y, et al. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis[J]. Chinese Journal of Chemical Engineering, 2022, 48: 227-235.
|
9 |
Zheng W H, Tsai M Y, Wolynes P G. Comparing the aggregation free energy landscapes of amyloid beta(1-42) and amyloid beta(1-40)[J]. Journal of the American Chemical Society, 2017, 139(46): 16666-16676.
|
10 |
Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease[J]. Nature Reviews. Neurology, 2019, 15(2): 73-88.
|
11 |
Cline E N, Bicca M A, Viola K L, et al. The amyloid-β oligomer hypothesis: beginning of the third decade[J]. Journal of Alzheimer's Disease: JAD, 2018, 64(s1): S567-S610.
|
12 |
Han X, He G F. Toward a rational design to regulate β-amyloid fibrillation for Alzheimer's disease treatment[J]. ACS Chemical Neuroscience, 2018, 9(2): 198-210.
|
13 |
Wang W J, Dong X Y, Sun Y. Modification of serum albumin by high conversion of carboxyl to amino groups creates a potent inhibitor of amyloid β-protein fibrillogenesis[J]. Bioconjugate Chemistry, 2019, 30(5): 1477-1488.
|
14 |
Małgorzata R, Marcin K, Agnieszka J, et al. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin[J]. Biochemical and Biophysical Research Communications, 2007, 364(3): 714-718.
|
15 |
Luo J H, Wärmländer S K T S, Gräslund A, et al. Human lysozyme inhibits the in vitro aggregation of Aβ peptides, which in vivo are associated with Alzheimer's disease[J]. Chemical Communications, 2013, 49(58): 6507-6509.
|
16 |
Wang W J, Liu W, Xu S Y, et al. Design of multifunctional agent based on basified serum albumin for efficient in vivo β-amyloid inhibition and imaging[J]. ACS Applied Bio Materials, 2020, 3(5): 3365-3377.
|
17 |
Li X, Xie B L, Sun Y. Basified human lysozyme: a potent inhibitor against amyloid β-protein fibrillogenesis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(50): 15569-15577.
|
18 |
Stein T D, Anders N J, DeCarli C, et al. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2004, 24(35): 7707-7717.
|
19 |
Du J L, Murphy R M. Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers[J]. Biochemistry, 2010, 49(38): 8276-8289.
|
20 |
Mangrolia P, Yang D T, Murphy R M. Transthyretin variants with improved inhibition of β-amyloid aggregation[J]. Protein Engineering, Design and Selection, 2016, 29(6): 209-218.
|
21 |
Cotrina E Y, Vilà M, Nieto J, et al. Preparative scale production of recombinant human transthyretin for biophysical studies of protein-ligand and protein-protein interactions[J]. International Journal of Molecular Sciences, 2020, 21(24): 9640.
|
22 |
Böhlen P, Stein S, Dairman W, et al. Fluorometric assay of proteins in the nanogram range[J]. Archives of Biochemistry and Biophysics, 1973, 155(1): 213-220.
|
23 |
Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization[J]. Pharmaceutical Research, 2008, 25(7): 1487-1499.
|
24 |
Yang J N, Liu W, Sun Y, et al. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(7): 1804-1812.
|
25 |
Li Y H, Xu D, Ho S L, et al. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation[J]. Biomaterials, 2016, 94: 84-92.
|
26 |
Cho P Y, Joshi G, Johnson J A, et al. Transthyretin-derived peptides as β-amyloid inhibitors[J]. ACS Chemical Neuroscience, 2014, 5(7): 542-551.
|
27 |
Cheng S Y, Pages R A, Saroff H A, et al. Analysis of thyroid hormone binding to human serum prealbumin by 8-anilinonaphthalene- 1-sulfonate fluorescence[J]. Biochemistry, 1977, 16(16): 3707-3713.
|
28 |
Ghadami S A, Chia S A, Ruggeri F S, et al. Transthyretin inhibits primary and secondary nucleations of amyloid‑β peptide aggregation and reduces the toxicity of its oligomers[J]. Biomacromolecules, 2020, 21(3): 1112-1125.
|
29 |
Xiong N, Dong X Y, Zheng J, et al. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5650-5662.
|
30 |
Österlund N, Kulkarni Y S, Misiaszek A D, et al. Amyloid-β peptide interactions with amphiphilic surfactants: electrostatic and hydrophobic effects[J]. ACS Chemical Neuroscience, 2018, 9(7): 1680-1692.
|
31 |
Lublin A L, Link C D. Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity[J]. Drug Discovery Today: Technologies, 2013, 10(1): e115-e119.
|