化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4702-4709.DOI: 10.11949/0438-1157.20231041
收稿日期:
2023-10-08
修回日期:
2023-11-15
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
蔡骁
作者简介:
蔡骁(1990—),男,博士,助理教授,xiao.cai@xjtu.edu.cn
基金资助:
Xiao CAI(), Longkai ZHANG, Jinhua WANG, Zuohua HUANG
Received:
2023-10-08
Revised:
2023-11-15
Online:
2023-11-25
Published:
2024-01-22
Contact:
Xiao CAI
摘要:
在国家“双碳”目标下,化石燃料的无碳替代利用变得十分重要。金属燃料是一类新型的无碳燃料,其中微米铁粉被认为是最具潜力的金属燃料。然而,目前对铁粉燃烧机理的理解尚处于起步阶段。为了研究单颗粒铁粉的燃烧特性,基于振动-夹带流原理设计了一种新型铁粉燃烧器,实现了单颗粒铁粉稳定供给,并在热氛围中快速燃烧。研究了粒径主要集中在50~65 μm内的单颗粒铁粉在稀燃甲烷/空气热氛围中点燃和燃烧过程。观察到单颗粒铁粉的燃烧过程主要分为燃烧迟滞、正常燃烧和产物凝固三个阶段。采用高速摄像机拍摄了单个铁粉颗粒的燃烧历程,发现了典型的燃烧亮度反常现象,同时观察到铁粉颗粒的运动速度在燃烧后期发生突变。另外,通过对燃烧中间产物与最终产物进行采样分析,表明单颗粒铁粉在燃烧初期发生熔化,在燃烧过程中产生气体并膨胀,最终发生破裂形成空心薄壁球体。
中图分类号:
蔡骁, 张龙凯, 王金华, 黄佐华. 单颗粒铁粉燃烧特性及产物形貌分析[J]. 化工学报, 2023, 74(11): 4702-4709.
Xiao CAI, Longkai ZHANG, Jinhua WANG, Zuohua HUANG. Analysis of combustion characteristics and product morphology of single iron particle[J]. CIESC Journal, 2023, 74(11): 4702-4709.
甲烷 | 空气 | 计量比 | 载气(空气) |
---|---|---|---|
1.9 L/min | 23.1 L/min | 0.8 | 5 L/min |
表1 实验工况
Table 1 Experimental conditions
甲烷 | 空气 | 计量比 | 载气(空气) |
---|---|---|---|
1.9 L/min | 23.1 L/min | 0.8 | 5 L/min |
1 | Halter F, Jeanjean S, Chauveau C, et al. Recyclable metal fuels as future zero-carbon energy carrier[J]. Applications in Energy and Combustion Science, 2023, 13: 100100. |
2 | Young G, Sullivan K, Zachariah M R, et al. Combustion characteristics of boron nanoparticles[J]. Combustion and Flame, 2009, 156(2): 322-333. |
3 | Ao W, Fan Z M, Gao Y, et al. Ignition and combustion characteristics of boron-based nanofluid fuel[J]. Combustion and Flame, 2023, 254: 112831. |
4 | Huang Y, Risha G A, Yang V, et al. Effect of particle size on combustion of aluminum particle dust in air[J]. Combustion and Flame, 2009, 156(1): 5-13. |
5 | Zhang G C, Liu L, Wen Z, et al. Experimental and numerical investigation of aluminum particle combustion driven instability in solid rocket motors[J]. Acta Astronautica, 2023, 211: 268-279. |
6 | Bergthorson J M. Recyclable metal fuels for clean and compact zero-carbon power[J]. Progress in Energy and Combustion Science, 2018, 68: 169-196. |
7 | Muller M, El-Rabii H, Fabbro R. Liquid phase combustion of iron in an oxygen atmosphere[J]. Journal of Materials Science, 2015, 50(9): 3337-3350. |
8 | Choisez L, van Rooij N E, Hessels C J M, et al. Phase transformations and microstructure evolution during combustion of iron powder[J]. Acta Materialia, 2022, 239: 118261. |
9 | Li S, Huang J Q, Weng W B, et al. Ignition and combustion behavior of single micron-sized iron particle in hot gas flow[J]. Combustion and Flame, 2022, 241: 112099. |
10 | Ning D G, Shoshin Y, van Stiphout M, et al. Temperature and phase transitions of laser-ignited single iron particle[J]. Combustion and Flame, 2022, 236: 111801. |
11 | Sun J H, Dobashi R, Hirano T. Concentration profile of particles across a flame propagating through an iron particle cloud[J]. Combustion and Flame, 2003, 134(4): 381-387. |
12 | Sun J H, Dobashi R, Hirano T. Combustion behavior of iron particles suspended in air[J]. Combustion Science and Technology, 2000, 150(1/2/3/4/5/6): 99-114. |
13 | McRae M, Julien P, Salvo S, et al. Stabilized, flat iron flames on a hot counterflow burner[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3185-3191. |
14 | Bergthorson J M, Goroshin S, Soo M J, et al. Direct combustion of recyclable metal fuels for zero-carbon heat and power[J]. Applied Energy, 2015, 160: 368-382. |
15 | Poletaev N I, Khlebnikova M Y. Combustion of iron particles suspension in laminar premixed and diffusion flames[J]. Combustion Science and Technology, 2022, 194(7): 1356-1377. |
16 | Cai X, Su S G, Su L M, et al. Structure and propagation of spherical turbulent iron-methane hybrid flame at elevated pressure[J]. Combustion and Flame, 2023, 255: 112918. |
17 | Shoshin Y, Dreizin E. Particle combustion rates in premixed flames of polydisperse metal-air aerosols[J]. Combustion and Flame, 2003, 133(3): 275-287. |
18 | Ning D G, Shoshin Y, van Oijen J A, et al. Burn time and combustion regime of laser-ignited single iron particle[J]. Combustion and Flame, 2021, 230: 111424. |
19 | Li Y H, Pangestu S, Purwanto A, et al. Synergetic combustion behavior of aluminum and coal addition in hybrid iron-methane-air premixed flames[J]. Combustion and Flame, 2021, 228: 364-374. |
20 | Liu X, Tan H Z, Xiong X H, et al. Mechanism study of nitric oxide reduction by light gases from typical Chinese coals[J]. Journal of the Energy Institute, 2020, 93(4): 1697-1704. |
21 | 陶顺龙, 陆海峰, 郭晓镭, 等. 煤粉料仓通气下料流动行为 [J]. 化工学报, 2014, 65(4): 1186-1193. |
Tao S L, Lu H F, Guo X L, et al. Flow behavior of aerated discharging of pulverized coal from hopper[J]. CIESC Journal, 2014, 65(4): 1186-1193. | |
22 | Smith G P, Golden D M, Frenklach M, et al. GRI-Mech 2.1[EB/OL]. . |
23 | Jean-Philyppe J, Fujinawa A, Bergthorson J M, et al. The ignition of fine iron particles in the Knudsen transition regime[J]. Combustion and Flame, 2023, 255: 112869. |
24 | Schmidt U, Weigert M, Broaddus C, et al. Cell detection with star-convex polygons[M]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2018. Cham: Springer International Publishing, 2018: 265-273. |
25 | Ershov D, Phan M S, Pylvänäinen J W, et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines[J]. Nature Methods, 2022, 19(7): 829-832. |
26 | Dreizin E L. Phase changes in metal combustion[J]. Progress in Energy and Combustion Science, 2000, 26(1): 57-78. |
27 | Aokl H, Kurosakl Y, Anzai H. Study on the tubular pinch effect in a pipe flow (Ⅰ): Lateral migration of a single particle in laminar Poiseuille flow[J]. Bulletin of JSME, 1979, 22(164): 206-212. |
28 | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
Wei X Y, Qian Y. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder[J]. CIESC Journal, 2023, 74(6): 2624-2638. | |
29 | 曾如宾, 沈中杰, 梁钦锋, 等. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
Zeng R B, Shen Z J, Liang Q F, et al. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation[J]. CIESC Journal, 2023, 74(8): 3353-3365. | |
30 | Yurek G J, Hirth J P, Rapp R A. The formation of two-phase layered scales on pure metals[J]. Oxidation of Metals, 1974, 8(5): 265-281. |
31 | Ning D G, Shoshin Y, van Oijen J, et al. Size evolution during laser-ignited single iron particle combustion[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3561-3571. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[3] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[4] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[5] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[6] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[7] | 李晨亚, 刘捷, 王建芝, 刘艳萍, 林笑, 喻发全. 螺旋微通道反应器贝克曼重排制备己内酰胺[J]. 化工学报, 2023, 74(10): 4182-4190. |
[8] | 张金鹏, 王强, 王艳美, 严舒, 吴建波, 张慧, 白红存. 镍基载氧体化学链燃烧过程中宁夏QH和YCW煤分子结构演化特征及对比分析[J]. 化工学报, 2023, 74(10): 4252-4266. |
[9] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[10] | 陈余, 郑晓妍, 赵辉, 王二强, 李杰, 李春山. Pickering乳液催化非均相羟醛缩合反应研究[J]. 化工学报, 2023, 74(1): 449-458. |
[11] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[12] | 鲁文静, 李先锋. 液流电池多孔离子传导膜研究进展[J]. 化工学报, 2023, 74(1): 192-204. |
[13] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
[14] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[15] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||