化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4688-4701.DOI: 10.11949/0438-1157.20230948
收稿日期:
2023-09-11
修回日期:
2023-10-27
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
张玉明
作者简介:
陈哲文(1990—),男,博士,讲师,2022880013@cup.edu.cn
基金资助:
Zhewen CHEN(), Junjie WEI, Yuming ZHANG(
), Wei ZHANG, Jiazhou LI
Received:
2023-09-11
Revised:
2023-10-27
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yuming ZHANG
摘要:
基于超临界水煤气化合成气的成分特征,提出了一种新型CO2近零排放的太阳能驱动超临界水煤气化耦合固体氧化物燃料电池(SOFC)发电系统。太阳能用于加热气化室给水以及提供煤气化反应热,气化合成气进入SOFC发电,SOFC阳极排气与纯氧在燃气轮机燃烧室内发生燃烧反应,产物为CO2/H2O混合物,易于实现CO2的分离捕集。研究了气化室内煤浆浓度、SOFC工作温度以及重整温度等关键参数对系统性能的影响规律,揭示了系统能量能质的分布规律及转移转化机制,上述参数分别为11.3%(质量)、1000℃以及750℃时,系统的发电效率可达到47.59%。该研究通过煤炭化学能与太阳能的互补梯级利用,结合SOFC内电化学反应及燃烧室内富氧燃烧技术,实现了CO2近零排放,对实现双碳目标具有重要意义。
中图分类号:
陈哲文, 魏俊杰, 张玉明, 张炜, 李家州. CO2近零排放的光煤互补耦合SOFC发电系统热力学分析[J]. 化工学报, 2023, 74(11): 4688-4701.
Zhewen CHEN, Junjie WEI, Yuming ZHANG, Wei ZHANG, Jiazhou LI. Thermodynamic analysis of CO2 near-zero-emission power system with integrated solar energy, supercritical water gasification of coal and SOFC[J]. CIESC Journal, 2023, 74(11): 4688-4701.
图2 太阳能驱动超临界水煤气化耦合SOFC发电系统全流程能量转移转化
Fig.2 The energy conversion and transformation in the power system integrated solar-driven supercritical water-coal gasification and SOFC
参数 | 取值 |
---|---|
环境温度/℃ | 25 |
镜场开口面积/m2 | 5.21×104 |
太阳能辐照强度/(W/m2) | 700 |
总光学效率/% | 73.76 |
太阳能气化炉温度/℃,压力/bar | 660,250 |
换热器夹点温度/℃ | 10 |
水泵效率/% | 80 |
重整反应器温度/℃,压力/bar | 750,15 |
变换反应器温度/℃,压力/bar | 220,15 |
SOFC反应温度/℃,压力/bar | 1000,15 |
膨胀机等熵效率/% | 90 |
燃气透平等熵效率/% | 89 |
压气机等熵效率/% | 88 |
燃气透平压比 | 15 |
表1 系统设计参数取值[25, 32]
Table 1 System key parameter and the value[25,32]
参数 | 取值 |
---|---|
环境温度/℃ | 25 |
镜场开口面积/m2 | 5.21×104 |
太阳能辐照强度/(W/m2) | 700 |
总光学效率/% | 73.76 |
太阳能气化炉温度/℃,压力/bar | 660,250 |
换热器夹点温度/℃ | 10 |
水泵效率/% | 80 |
重整反应器温度/℃,压力/bar | 750,15 |
变换反应器温度/℃,压力/bar | 220,15 |
SOFC反应温度/℃,压力/bar | 1000,15 |
膨胀机等熵效率/% | 90 |
燃气透平等熵效率/% | 89 |
压气机等熵效率/% | 88 |
燃气透平压比 | 15 |
工业分析/%(质量,收到基) | 元素分析/%(质量,收到基) | |||||||
---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 |
2.79 | 6.84 | 33.19 | 57.18 | 74.29 | 4.69 | 9.26 | 1.00 | 1.12 |
表2 气化煤的工业分析和元素分析
Table 2 Proximate analysis and ultimate analysis of gasification coal
工业分析/%(质量,收到基) | 元素分析/%(质量,收到基) | |||||||
---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 |
2.79 | 6.84 | 33.19 | 57.18 | 74.29 | 4.69 | 9.26 | 1.00 | 1.12 |
参数 | 数值 |
---|---|
电池长度/m,直径/m | 1.5,0.022 |
阳极厚度 | 0.0001 |
阴极厚度 | 0.0022 |
电解质厚度 | 0.00004 |
互连厚度 | 0.000085 |
阳极电阻率 | 2.98 |
阴极电阻率 | 8.114 |
电解液电阻率 | 2.94 |
互连电阻率 | 1.2 |
表3 计算欧姆损失所需参数[36]
Table 3 Parameters needed to calculate ohm loss[36]
参数 | 数值 |
---|---|
电池长度/m,直径/m | 1.5,0.022 |
阳极厚度 | 0.0001 |
阴极厚度 | 0.0022 |
电解质厚度 | 0.00004 |
互连厚度 | 0.000085 |
阳极电阻率 | 2.98 |
阴极电阻率 | 8.114 |
电解液电阻率 | 2.94 |
互连电阻率 | 1.2 |
参数 | 数值 |
---|---|
阳极指前因子 | 7 |
阴极指前因子 | 7 |
阳极活化能Eact,an/(104J | 11 |
阴极活化能Eact,ca/(104J | 12 |
表4 计算活化损失所需参数[37-38]
Table 4 Parameters needed to calculate activation loss[37-38]
参数 | 数值 |
---|---|
阳极指前因子 | 7 |
阴极指前因子 | 7 |
阳极活化能Eact,an/(104J | 11 |
阴极活化能Eact,ca/(104J | 12 |
参数 | 数值 |
---|---|
H2分子扩散体积/(10-6m3 | 6.12 |
16.3 | |
18.3 | |
H2O分子扩散体积/(10-6m3 | 13.1 |
表5 计算扩散损失所需参数[39]
Table 5 The parameters required to calculate the diffusion loss[39]
参数 | 数值 |
---|---|
H2分子扩散体积/(10-6m3 | 6.12 |
16.3 | |
18.3 | |
H2O分子扩散体积/(10-6m3 | 13.1 |
参数 | 数值 |
---|---|
Nernst电压/V | 0.947 |
欧姆损失/V | 0.113 |
活化损失/V | 0.007 |
扩散损失/V | 0.046 |
工作电压/V | 0.782 |
电流/A | 2.114×107 |
SOFC电堆功率/kW | 16532 |
系统净发电量/kW | 29439.32 |
系统发电效率/% | 47.59 |
表6 主要计算结果
Table 6 Calculation results and output parameters
参数 | 数值 |
---|---|
Nernst电压/V | 0.947 |
欧姆损失/V | 0.113 |
活化损失/V | 0.007 |
扩散损失/V | 0.046 |
工作电压/V | 0.782 |
电流/A | 2.114×107 |
SOFC电堆功率/kW | 16532 |
系统净发电量/kW | 29439.32 |
系统发电效率/% | 47.59 |
物流 | 温度/℃ | 压力/bar | 摩尔流量/(kmol/s) | 摩尔组成占比/% |
---|---|---|---|---|
气化煤 | 25.0 | 1 | 1 kg/s | — |
2 | 660.0 | 250 | 0.484 | H2:10.8、CO:0.5、CO2:6.9、CH4:4.0、C2H6:0.3、H2O:77.4 |
3 | 92.0 | 1 | 0.484 | H2:10.8、CO:0.5、CO2:6.9、CH4:4.0、C2H6:0.3、H2O:77.4 |
4 | 25.0 | 1 | 0.436 | H2O:100 |
5 | 54.7 | 250 | 0.436 | H2O:100 |
6 | 25.0 | 1 | 0.112 | H2:46.6、CO:2.3、CO2:29.3、CH4:17.1、C2H6:1.5、H2O:3.2 |
7 | 990.0 | 1 | 0.112 | H2:46.6、CO:2.3、CO2:29.3、CH4:17.1、C2H6:1.5、H2O:3.2 |
8 | 750.0 | 15 | 0.186 | H2:59.3、CO:11.7、CO2:17.7、C2H6:0.9、H2O:10.4 |
9 | 90.0 | 15 | 0.186 | H2:59.3、CO:11.7、CO2:17.7、C2H6:0.9、H2O:10.4 |
10 | 220.0 | 15 | 0.225 | H2:58.6、CO2:24.3、C2H6:0.7、H2O:16.4 |
11 | 650.0 | 15 | 0.225 | H2:58.6、CO2:24.3、C2H6:0.7、H2O:16.4 |
12 | 999.4 | 15 | 0.225 | H2:10.0、CO2:24.3、C2H6:0.7、H2O:65.0 |
13 | 25.0 | 1 | 0.382 | O2:21.0、N2:79.0 |
14 | 407.9 | 15 | 0.382 | O2:21.0、N2:79.0 |
15 | 650.0 | 15 | 0.382 | O2:21.0、N2:79.0 |
16 | 999.4 | 15 | 0.327 | O2:7.8、N2:92.2 |
17 | 729.4 | 15 | 0.327 | O2:7.8、N2:92.2 |
18 | 390.5 | 15 | 0.327 | O2:7.8、N2:92.2 |
19 | 222.0 | 15 | 0.327 | O2:7.8、N2:92.2 |
20 | 25.0 | 1 | 0.017 | O2:100 |
21 | 25.0 | 1 | 0.327 | O2:7.8、N2:92.2 |
22 | 211.9 | 250 | 0.436 | H2O:100 |
23 | 253.0 | 250 | 0.436 | H2O:100 |
24 | 1245.9 | 15 | 0.232 | CO2:25.0、H2O:75.0 |
25 | 734.0 | 1 | 0.232 | CO2:25.0、H2O:75.0 |
26 | 120.0 | 1 | 0.232 | CO2:25.0、H2O:75.0 |
27 | 542.6 | 15 | 0.225 | H2:10.0、CO2:24.3、C2H6:0.7、H2O:65.0 |
表7 系统关键点物流参数
Table 7 Parameters of the key points in the system
物流 | 温度/℃ | 压力/bar | 摩尔流量/(kmol/s) | 摩尔组成占比/% |
---|---|---|---|---|
气化煤 | 25.0 | 1 | 1 kg/s | — |
2 | 660.0 | 250 | 0.484 | H2:10.8、CO:0.5、CO2:6.9、CH4:4.0、C2H6:0.3、H2O:77.4 |
3 | 92.0 | 1 | 0.484 | H2:10.8、CO:0.5、CO2:6.9、CH4:4.0、C2H6:0.3、H2O:77.4 |
4 | 25.0 | 1 | 0.436 | H2O:100 |
5 | 54.7 | 250 | 0.436 | H2O:100 |
6 | 25.0 | 1 | 0.112 | H2:46.6、CO:2.3、CO2:29.3、CH4:17.1、C2H6:1.5、H2O:3.2 |
7 | 990.0 | 1 | 0.112 | H2:46.6、CO:2.3、CO2:29.3、CH4:17.1、C2H6:1.5、H2O:3.2 |
8 | 750.0 | 15 | 0.186 | H2:59.3、CO:11.7、CO2:17.7、C2H6:0.9、H2O:10.4 |
9 | 90.0 | 15 | 0.186 | H2:59.3、CO:11.7、CO2:17.7、C2H6:0.9、H2O:10.4 |
10 | 220.0 | 15 | 0.225 | H2:58.6、CO2:24.3、C2H6:0.7、H2O:16.4 |
11 | 650.0 | 15 | 0.225 | H2:58.6、CO2:24.3、C2H6:0.7、H2O:16.4 |
12 | 999.4 | 15 | 0.225 | H2:10.0、CO2:24.3、C2H6:0.7、H2O:65.0 |
13 | 25.0 | 1 | 0.382 | O2:21.0、N2:79.0 |
14 | 407.9 | 15 | 0.382 | O2:21.0、N2:79.0 |
15 | 650.0 | 15 | 0.382 | O2:21.0、N2:79.0 |
16 | 999.4 | 15 | 0.327 | O2:7.8、N2:92.2 |
17 | 729.4 | 15 | 0.327 | O2:7.8、N2:92.2 |
18 | 390.5 | 15 | 0.327 | O2:7.8、N2:92.2 |
19 | 222.0 | 15 | 0.327 | O2:7.8、N2:92.2 |
20 | 25.0 | 1 | 0.017 | O2:100 |
21 | 25.0 | 1 | 0.327 | O2:7.8、N2:92.2 |
22 | 211.9 | 250 | 0.436 | H2O:100 |
23 | 253.0 | 250 | 0.436 | H2O:100 |
24 | 1245.9 | 15 | 0.232 | CO2:25.0、H2O:75.0 |
25 | 734.0 | 1 | 0.232 | CO2:25.0、H2O:75.0 |
26 | 120.0 | 1 | 0.232 | CO2:25.0、H2O:75.0 |
27 | 542.6 | 15 | 0.225 | H2:10.0、CO2:24.3、C2H6:0.7、H2O:65.0 |
项目 | 数值/kW | 占比/% |
---|---|---|
㶲输入 | ||
气化煤 | 26015.83 | 41.97 |
太阳能 | 35973.04 | 58.03 |
总计 | 61988.87 | 100 |
㶲输出 | ||
气化室未反应碳 | 1415.26 | 2.28 |
系统净发电量 | 29439.32 | 47.49 |
冷凝器 | 2500.53 | 4.03 |
燃气轮机排烟 | 1266.72 | 2.04 |
㶲损失 | ||
未吸收太阳能的㶲 | 9439.33 | 15.23 |
太阳能气化室 | 8889.86 | 14.34 |
膨胀机 | 964.28 | 1.56 |
燃气透平 | 214.86 | 0.35 |
燃烧室 | 1668.55 | 2.69 |
压气机 | 238.05 | 0.38 |
换热器1 | 633.89 | 1.02 |
换热器2 | 896.28 | 1.45 |
换热器3 | 250.15 | 0.40 |
换热器4 | 326.68 | 0.53 |
省煤器1 | 1678.28 | 2.71 |
省煤器2 | 123.52 | 0.20 |
重整反应器 | 364.47 | 0.59 |
变换反应器 | 263.55 | 0.43 |
SOFC | 1196.42 | 1.93 |
SOFC阴极空气透平 | 218.76 | 0.35 |
总计 | 61988.87 | 100 |
㶲效率 | 47.49% |
表8 系统㶲平衡分析
Table 8 Exergic balance analysis of system
项目 | 数值/kW | 占比/% |
---|---|---|
㶲输入 | ||
气化煤 | 26015.83 | 41.97 |
太阳能 | 35973.04 | 58.03 |
总计 | 61988.87 | 100 |
㶲输出 | ||
气化室未反应碳 | 1415.26 | 2.28 |
系统净发电量 | 29439.32 | 47.49 |
冷凝器 | 2500.53 | 4.03 |
燃气轮机排烟 | 1266.72 | 2.04 |
㶲损失 | ||
未吸收太阳能的㶲 | 9439.33 | 15.23 |
太阳能气化室 | 8889.86 | 14.34 |
膨胀机 | 964.28 | 1.56 |
燃气透平 | 214.86 | 0.35 |
燃烧室 | 1668.55 | 2.69 |
压气机 | 238.05 | 0.38 |
换热器1 | 633.89 | 1.02 |
换热器2 | 896.28 | 1.45 |
换热器3 | 250.15 | 0.40 |
换热器4 | 326.68 | 0.53 |
省煤器1 | 1678.28 | 2.71 |
省煤器2 | 123.52 | 0.20 |
重整反应器 | 364.47 | 0.59 |
变换反应器 | 263.55 | 0.43 |
SOFC | 1196.42 | 1.93 |
SOFC阴极空气透平 | 218.76 | 0.35 |
总计 | 61988.87 | 100 |
㶲效率 | 47.49% |
文献 | 系统类型 | 碳捕集方法 | 发电效率/% | CO2捕集率/% | |
---|---|---|---|---|---|
不带CCS | 带CCS | ||||
[ | IGCC | 燃烧前捕集 | 45.35 | 35.16 | 90.00 |
[ | IGCC | 燃烧前捕集 | 40.92 | 35.60 | 90.00 |
[ | IGCC | 燃烧前捕集 | 41.27 | 36.46 | 96.00 |
[ | BIGCC | 燃烧前捕集 | 36.40 | 26.00 | 76.40 |
燃烧后捕集 | 38.80 | 24.70 | 90.00 | ||
[ | IGCC | 燃烧前捕集 | 44.10 | 35.00 | — |
[ | IGCC | 燃烧前捕集 | 47.66 | 38.38 | 90.80 |
富氧燃烧 | 47.66 | 40.27 | 97.40 | ||
[ | IGCC | 燃烧前捕集 | 50.79 | 38.71 | 88.00 |
[ | MCFC-MGT | 富氧燃烧 | 55.13 | 45.41 | 100.00 |
[ | IGCC | 富氧燃烧 | 47.24 | 40.06 | 95.67 |
[ | IGCC | 燃烧前捕集 | 44.00 | 34.00 | 85~90 |
[ | IGCC | 燃烧后捕集 | 43.00 | 31.80 | 90.00 |
[ | IGCC | 燃烧后捕集 | 49.30 | 40.80 | 81.00 |
[ | IGCC | 富氧燃烧 | 44.34 | 34.76 | 88.00 |
[ | IGCC | 富氧燃烧 | 41.51 | 32.96 | 100.00 |
[ | IGCC | 燃烧前捕集 | 42.10 | 37.80 | 92.00 |
IGCC | 燃烧后捕集 | 42.10 | 41.00 | 92.00 | |
[ | IGCC | 燃烧前捕集 | 42.15 | 35.82 | 92.83 |
IGCC | 燃烧后捕集 | 42.15 | 34.63 | 90.36 | |
本文系统 | 光煤互补耦合SOFC | 多能互补+富氧燃烧 | 47.59 | 100.00 |
表9 不同煤基碳捕集技术的性能对比
Table 9 The comparison between different coal-based carbon capture and storage technologies
文献 | 系统类型 | 碳捕集方法 | 发电效率/% | CO2捕集率/% | |
---|---|---|---|---|---|
不带CCS | 带CCS | ||||
[ | IGCC | 燃烧前捕集 | 45.35 | 35.16 | 90.00 |
[ | IGCC | 燃烧前捕集 | 40.92 | 35.60 | 90.00 |
[ | IGCC | 燃烧前捕集 | 41.27 | 36.46 | 96.00 |
[ | BIGCC | 燃烧前捕集 | 36.40 | 26.00 | 76.40 |
燃烧后捕集 | 38.80 | 24.70 | 90.00 | ||
[ | IGCC | 燃烧前捕集 | 44.10 | 35.00 | — |
[ | IGCC | 燃烧前捕集 | 47.66 | 38.38 | 90.80 |
富氧燃烧 | 47.66 | 40.27 | 97.40 | ||
[ | IGCC | 燃烧前捕集 | 50.79 | 38.71 | 88.00 |
[ | MCFC-MGT | 富氧燃烧 | 55.13 | 45.41 | 100.00 |
[ | IGCC | 富氧燃烧 | 47.24 | 40.06 | 95.67 |
[ | IGCC | 燃烧前捕集 | 44.00 | 34.00 | 85~90 |
[ | IGCC | 燃烧后捕集 | 43.00 | 31.80 | 90.00 |
[ | IGCC | 燃烧后捕集 | 49.30 | 40.80 | 81.00 |
[ | IGCC | 富氧燃烧 | 44.34 | 34.76 | 88.00 |
[ | IGCC | 富氧燃烧 | 41.51 | 32.96 | 100.00 |
[ | IGCC | 燃烧前捕集 | 42.10 | 37.80 | 92.00 |
IGCC | 燃烧后捕集 | 42.10 | 41.00 | 92.00 | |
[ | IGCC | 燃烧前捕集 | 42.15 | 35.82 | 92.83 |
IGCC | 燃烧后捕集 | 42.15 | 34.63 | 90.36 | |
本文系统 | 光煤互补耦合SOFC | 多能互补+富氧燃烧 | 47.59 | 100.00 |
1 | He G, Lin J, Zhang Y, et al. Enabling a rapid and just transition away from coal in China[J]. One Earth, 2020, 3(2): 187-194. |
2 | Dai S F, Finkelman R B. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155-164. |
3 | IEA. Global energy and CO2 status report 2018[R]. IEA, 2018. |
4 | 国家统计局. 中国第三产业统计年鉴—2019[M]. 北京: 中国统计出版社, 2020. |
National Bureau of Statistics. China Statistical Yearbook of the Tertiary Industry—2019[M]. Beijing: China Statistics Press, 2020. | |
5 | Zhou L Y, Xu G, Zhao S F, et al. Parametric analysis and process optimization of steam cycle in double reheat ultra-supercritical power plants[J]. Applied Thermal Engineering, 2016, 99: 652-660. |
6 | 高嵩, 赵洁, 黄迪南. 1000 MW超超临界二次再热燃煤发电技术[J]. 中国电力, 2017, 50(6): 6-11. |
Gao S, Zhao J, Huang D N. Double-reheat coal-fired power generation technologies for 1000 MW ultra-supercritical units[J]. Electric Power, 2017, 50(6): 6-11. | |
7 | Xu J L, Sun E H, Li M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157: 227-246. |
8 | Sun E H, Xu J L, Li M J, et al. Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant[J]. Energy Conversion and Management, 2018, 172: 138-154. |
9 | IEA. China’s Emissions Trading Scheme: Designing Efficient Allowance Allocation[M]. International Energy Agency: OECD, 2020. |
10 | 帅永, 赵斌, 蒋东方, 等. 中国燃煤高效清洁发电技术现状与展望[J]. 热力发电, 2022, 51(1): 1-10. |
Shuai Y, Zhao B, Jiang D F, et al. Status and prospect of coal-fired high efficiency and clean power generation technology in China[J]. Thermal Power Generation, 2022, 51(1): 1-10. | |
11 | 胡玥, 徐钢, 段栋伟, 等. 碳减排技术发展现状[J]. 热力发电, 2017, 46(2): 1-6, 14. |
Hu Y, Xu G, Duan D W, et al. Current situation and performance comparison of carbon capture technologies[J]. Thermal Power Generation, 2017, 46(2): 1-6, 14. | |
12 | 郭烈锦, 赵亮, 吕友军, 等. 煤炭超临界水气化制氢发电多联产技术[J]. 工程热物理学报, 2017, 38(3): 678-679. |
Guo L J, Zhao L, Lyu Y J, et al. Multi-generation technology of hydrogen production and power generation by coal supercritical water gasification[J]. Journal of Engineering Thermophysics, 2017, 38(3): 678-679. | |
13 | Ge Z W, Jin H, Guo L J. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: explore the way to complete gasification of coal[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19583-19592. |
14 | Jin H, Lu Y J, Liao B, et al. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7151-7160. |
15 | Azadi P, Farnood R, Vuillardot C. Estimation of heating time in tubular supercritical water reactors[J]. The Journal of Supercritical Fluids, 2011, 55(3): 1038-1045. |
16 | Jin H, Guo S M, Guo L J, et al. A mathematical model and numerical investigation for glycerol gasification in supercritical water with a tubular reactor[J]. The Journal of Supercritical Fluids, 2016, 107: 526-533. |
17 | Chen J W, Wang Q T, Xu Z Y, et al. Process in supercritical water gasification of coal: a review of fundamentals, mechanisms, catalysts and element transformation[J]. Energy Conversion and Management, 2021, 237: 114122. |
18 | Bermejo M D, Cocero M J, Fernández-Polanco F. A process for generating power from the oxidation of coal in supercritical water[J]. Fuel, 2004, 83(2): 195-204. |
19 | Yan Q H, Hou Y W, Luo J R, et al. The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology[J]. Energy Conversion and Management, 2016, 129: 122-130. |
20 | Briola S, Gabbrielli R, Schiavetti M, et al. Supercritical water oxidation of coal in power plants with low CO2 emissions[C]//The International Conference ECOS 2007 (Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems). Padova, Italy, 2007. |
21 | Guo L J, Jin H. Boiling coal in water: hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12953-12967. |
22 | Chen Z W, Zhang X S, Han W, et al. A power generation system with integrated supercritical water gasification of coal and CO2 capture[J]. Energy, 2018, 142: 723-730. |
23 | Chen Z W, Zhang X S, Li S, et al. Novel power generation models integrated supercritical water gasification of coal and parallel partial chemical heat recovery[J]. Energy, 2017, 134: 933-942. |
24 | El-Emam R S, Dincer I, Naterer G F. Energy and exergy analyses of an integrated SOFC and coal gasification system[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1689-1697. |
25 | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制 [J]. 化工学报, 2023, 74(9): 3888-3902. |
Chen Z W, Wei J J, Zhang Y M. The system integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC[J]. CIESC Journal, 2023, 74(9): 3888-3902. | |
26 | Romano M C, Spallina V, Campanari S. Integrating IT-SOFC and gasification combined cycle with methanation reactor and hydrogen firing for near zero-emission power generation from coal[J]. Energy Procedia, 2011, 4: 1168-1175. |
27 | Chen Z W, Zhang X S, Gao L, et al. Thermal analysis of supercritical water gasification of coal for power generation with partial heat recovery[J]. Applied Thermal Engineering, 2017, 111: 1287-1295. |
28 | 卢立宁, 李素芬, 沈胜强, 等. 固体氧化物燃料电池与燃气轮机联合发电系统模拟研究[J]. 热能动力工程, 2004, 19(4): 358-362, 436. |
Lu L N, Li S F, Shen S Q, et al. Simulation study of a combined power generation system incorporating a solid-oxide fuel cell and a gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(4): 358-362, 436. | |
29 | Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus[J]. Energy, 2010, 35(12): 4545-4555. |
30 | Tanim T, Bayless D J, Trembly J P. Modeling a 5 kWe planar solid oxide fuel cell based system operating on JP-8 fuel and a comparison with tubular cell based system for auxiliary and mobile power applications[J]. Journal of Power Sources, 2014, 245: 986-997. |
31 | 李裕, 叶爽, 王蔚国. 基于天然气自热重整的SOFC系统性能分析[J]. 化工学报, 2016, 67(4): 1557-1564. |
Li Y, Ye S, Wang W G. Performance analysis of SOFC system based on natural gas autothermal reforming[J]. CIESC Journal, 2016, 67(4): 1557-1564. | |
32 | 郑志美, 刘泰秀, 刘启斌. 太阳能热化学与燃料电池联合的发电系统[J]. 工程热物理学报, 2020, 41(11): 2627-2634. |
Zheng Z M, Liu T X, Liu Q B. A power generation system with solar thermochemical and fuel cell[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2627-2634. | |
33 | 吴海峰, 刘佳维, 刘启斌. 太阳能驱动生物质气化多联产系统研究[J]. 太阳能学报, 2022, 43(1): 465-470. |
Wu H F, Liu J W, Liu Q B. Study on solar-driven biomass gasification polygeneration system[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 465-470. | |
34 | 吴海峰. 聚光太阳能与生物质热化学互补机理及系统集成研究[D]. 重庆: 重庆大学, 2020. |
Wu H F. Study on thermochemical complementary mechanism and system integration of concentrated solar energy and biomass[D]. Chongqing: Chongqing University, 2020. | |
35 | US Department of Energy. Fuel Cell Handbook[M]. 5th ed. Morgantown, WV: Federal Energy Technology Center, 2000. |
36 | Akkaya A V. Electrochemical model for performance analysis of a tubular SOFC[J]. International Journal of Energy Research, 2007, 31(1): 79-98. |
37 | Selimovic A. Modelling of solid oxide fuel cells applied to the analysis of integrated systems with gas turbines[D]. Lund University, 2002. |
38 | Costamagna P, Honegger K. Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization[J]. Journal of the Electrochemical Society, 1998, 145(11): 3995-4007. |
39 | 罗丽琦, 谢广元, 王绍荣. 以气化煤气为燃料的固体氧化物燃料电池热电联供系统设计[J]. 洁净煤技术, 2023, 29(5): 68-79. |
Luo L Q, Xie G Y, Wang S R. Design of combined heat and power supply system based on coal gas SOFC(IGFC-CHP) system[J]. Clean Coal Technology, 2023, 29(5): 68-79. | |
40 | Abraham F, Dincer I. Thermodynamic analysis of direct urea solid oxide fuel cell in combined heat and power applications[J]. Journal of Power Sources, 2015, 299: 544-556. |
41 | Guo L J, Jin H, Lu Y J. Supercritical water gasification research and development in China[J]. The Journal of Supercritical Fluids, 2015, 96: 144-150. |
42 | 陈新明, 史绍平, 闫姝, 等. 燃烧前CO2捕集技术在IGCC发电中的应用[J]. 化工学报, 2014, 65(8): 3193-3201. |
Chen X M, Shi S P, Yan S, et al. Application of CO2 capture technology before burning in IGCC power generation system[J]. CIESC Journal, 2014, 65(8): 3193-3201. | |
43 | Shisir A, Ting W. Investigation of air extraction and carbon capture in an integrated gasification combined cycle (IGCC) system[C]//ASME 2021 Power Conference. 2021. |
44 | Li X W, Wang T. A parametric investigation of integrated gasification combined cycles with carbon capture[C]//Asme Turbo Expo: Turbine Technical Conference & Exposition. 2012. |
45 | Zang G Y, Jia J X, Tejasvi S, et al. Techno-economic comparative analysis of biomass integrated gasification combined cycles with and without CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 78: 73-84. |
46 | Huang Y, Rezvani S, McIlveen-Wright D, et al. Techno-economic assessment of pulverized coal boilers and IGCC power plants with CO2 capture[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 196-206. |
47 | Lozza G G, Romano M, Giuffrida A. Thermodynamic performance of IGCC with oxy-combustion CO2 capture[C]//1st International Conference on Sustainable Fossil Fuels for Future Energy. 2023. |
48 | Sanz W, Mayr M, Jericha H. Thermodynamic and economic evaluation of an IGCC plant based on the Graz cycle for CO2 capture[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK, 2010: 493-503. |
49 | Ahn J H, Seop Kim T. Performance evaluation of a molten carbonate fuel cell/micro gas turbine hybrid system with oxy-combustion carbon capture[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(4): 041502. |
50 | Spallina V, Romano M C, Campanari S, et al. A SOFC-based integrated gasification fuel cell cycle with CO2 capture[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(7): 1-10. |
51 | Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30(1): 53-62. |
52 | Kawabata M, Iki N, Kurata O, et al. Energy flow of advanced IGCC with CO2 capture option[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, British Columbia, Canada, 2012: 551-558. |
53 | Kawabata M, Kurata O, Iki N, et al. System modeling of exergy recuperated IGCC system with pre- and post-combustion CO2 capture[J]. Applied Thermal Engineering, 2013, 54(1): 310-318. |
54 | Duan L Q, Sun S Y, Yue L, et al. Study on a new IGCC (integrated gasification combined cycle) system with CO2 capture by integrating MCFC (molten carbonate fuel cell)[J]. Energy, 2015, 87: 490-503. |
55 | Duan L Q, Sun S Y, Yue L, et al. Study on different zero CO2 emission IGCC systems with CO2 capture by integrating OTM[J]. International Journal of Energy Research, 2016, 40(10): 1410-1427. |
56 | Asif M, Bak C U, Saleem M W, et al. Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture[J]. Fuel, 2015, 160: 513-524. |
57 | Cormos C C, Cormos A M, Agachi S. Power generation from coal and biomass based on integrated gasification combined cycle concept with pre- and post-combustion carbon capture methods[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(6): 870-877. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[8] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[9] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[12] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[13] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[14] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[15] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 462
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||