1 |
Shi Y M, Huang X B, Liu H. A method for enhancing low-pressure ignition of n-decane based on increasing hydroxyl free radicals[M]//Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2019: 185-196.
|
2 |
Wang Z J, Gou X L. Cool flame characteristics of methane/oxygen mixtures[J]. Journal of the Energy Institute, 2019, 92(6): 2004-2010.
|
3 |
Luo F T, Song W Y, Li J P, et al. Experimental study of kerosene supersonic combustion with pilot hydrogen and fuel additive under low flight mach conditions[J]. Energy, 2021, 222: 119858.
|
4 |
王智化, 余作超, 陈晨霖, 等. 新型零碳氨燃料的燃烧特性研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 24-40, 78.
|
|
Wang Z H, Yu Z C, Chen C L, et al. Research progress on combustion characteristics of new zero carbon ammonia fuel[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 24-40, 78.
|
5 |
Zhao Z C, Huang X B, Sheng H Q, et al. On promoted combustion stability of kerosene/ethanol blends at wide low temperatures: fuel reactivity improvement and Leidenfrost effect suppression[J]. Fuel, 2022, 315: 123221.
|
6 |
玄铁民, 孙中成, 米永刚, 等. 甲醇/正辛醇/HCB混合燃料喷雾燃烧特性[J]. 内燃机学报, 2022, 40(3): 216-224.
|
|
Xuan T M, Sun Z C, Mi Y G, et al. Spray and combustion characteristics of ternary blends with methanol, HCB and n-octanol[J]. Transactions of CSICE, 2022, 40(3): 216-224.
|
7 |
余彬彬, 蒋新生, 禹进, 等. 全氟己酮抑制航空煤油燃烧实验及化学动力学研究[J]. 化工学报, 2022, 73(4): 1834-1844.
|
|
Yu B B, Jiang X S, Yu J, et al. Experimental and chemical dynamics study on the inhibition of combustion of aviation kerosene by C6F12O[J]. CIESC Journal, 2022, 73(4): 1834-1844.
|
8 |
Liu W C, Liu Y W, Niu C C, et al. Numerical investigation of a coupled moving boundary model of radial flow in low-permeable stress-sensitive reservoir with threshold pressure gradient[J]. Chinese Physics B, 2016, 25(2): 024701.
|
9 |
马彪. 锂离子电池热失控释放气体可燃极限研究[D]. 北京: 北京交通大学, 2021.
|
|
Ma B. On the flammability limit of thermal runaway vent gas of lithium ion batteries[D]. Beijing: Beijing Jiaotong University, 2021.
|
10 |
Liu F, Guo H S, Smallwood G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames[J]. Combustion and Flame, 2003, 133(4): 495-497.
|
11 |
Zhang W K, Gou X L, Chen Z. Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures[J]. Fuel, 2017, 187: 111-116.
|
12 |
徐武. 若干哈龙替代物抑制碳氢火焰的机理研究[D]. 合肥: 中国科学技术大学, 2017.
|
|
Xu W. Hydrocarbon flame inhibition by halon replacements[D]. Hefei: University of Science and Technology of China, 2017.
|
13 |
Babushok V, Tsang W. Chemical and physical influences of halogenated fire suppressants[C]// Proceedings of the 7th HOTWC. NIST special pub. 984-2. 1997: 55.
|
14 |
Noto T, Babushok V, Hamins A, et al. Inhibition effectiveness of halogenated compounds[J]. Combustion and Flame, 1998, 112(1/2): 147-160.
|
15 |
Ren X Y, Jiang Y, Xu W. Numerical investigation of the chemical and physical effects of halogenated fire suppressants addition on methane-air mixtures[J]. Journal of Fire Sciences, 2016, 34(5): 416-430.
|
16 |
王星语. 环境友好氢氟烯烃类化合物的灭火性能和机理研究[D]. 天津: 中国民航大学, 2020.
|
|
Wang X Y. Study on the fire extinguishing performance and mechanism of eco-friendly hydrofluoroalkenes[D]. Tianjin: Civil Aviation University of China, 2020.
|
17 |
Luo M Y, Liu D. Kinetic analysis of ethanol and dimethyl ether flames with hydrogen addition[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3813-3823.
|
18 |
Luo M Y, Liu D. On the effects of hydrogen addition in premixed formaldehyde flames[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3824-3832.
|
19 |
Yin Y F, Jiang Y, Qiu R, et al. Physical and chemical effects of phosphorus-containing compounds on laminar premixed flame[J]. Chinese Physics B, 2018, 27(9): 094701.
|
20 |
Li W, Jiang Y, Xia Y. Numerical study on decoupling the chemical and thermal effects of a specific elementary reaction on the laminar flame speed[C]// The 9th International Seminar on Fire and Explosion Hazards. Saint-Petersburg, Russia, 2019.
|
21 |
He Y T, Liang M Q, Liao S Y, et al. Chemical effects of hydrogen addition on low-temperature oxidation of premixed laminar methane/air flames[J]. Fuel, 2020, 280: 118600.
|
22 |
He Y T, Liang M Q, Liu C Z, et al. Kinetic incentive of hydrogen addition on nonpremixed laminar methane/air flames[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14813-14823.
|
23 |
Dooley S, Won S H, Heyne J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4): 1444-1466.
|
24 |
Won S H, Dooley S, Dryer F L, et al. Kinetic effects of aromatic molecular structures on diffusion flame extinction[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1163-1170.
|
25 |
Kobe K. The properties of gases and liquids[J]. Journal of Chemical Education, 1959, 36: 154.
|
26 |
Kee R J, Rupley F M, Miller J A. Chemkin-Ⅱ: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Livermore, CA, United States: Sandia National Lab.(SNL-CA), 1989.
|
27 |
Linteris G T, Babushok V I, Sunderland P B, et al. Unwanted combustion enhancement by C6F12O fire suppressant[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2683-2690.
|
28 |
Pagliaro J L, Linteris G T, Sunderland P B, et al. Combustion inhibition and enhancement of premixed methane-air flames by halon replacements[J]. Combustion and Flame, 2015, 162(1): 41-49.
|
29 |
Takahashi F, Katta V R, Linteris G T, et al. Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2741-2748.
|
30 |
Sun Y H, Zhang Y F, Huang M M, et al. Effect of hydrogen addition on the combustion and emission characteristics of methane under gas turbine relevant operating condition[J]. Fuel, 2022, 324: 124707.
|
31 |
Hu E J, Huang Z H, Zheng J J, et al. Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6545-6557.
|