化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4535-4547.DOI: 10.11949/0438-1157.20230910
收稿日期:
2023-09-01
修回日期:
2023-10-20
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
王艳
作者简介:
王磊(1983—),男,博士,讲师,78348594@qq.com
基金资助:
Lei WANG(), Xiongjin CAO, Kai LUO, Yan WANG(), Hua FEI
Received:
2023-09-01
Revised:
2023-10-20
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yan WANG
摘要:
针对不同流动方向上超临界CO2流体在微型加热管(管径为0.75 mm)内的对流换热特性进行实验研究。实验结果表明,当系统压力、质量流量、加热功率以及进口温度保持恒定时,局部对流传热系数在水平流动方向和垂直向上流动方向上的变化趋势相同,并且水平流动方向上的局部对流传热系数始终大于垂直向上流动方向上的局部对流传热系数。但在垂直向下流动方向上,局部对流传热系数随无量纲温度的升高而显著增大,并在无量纲温度最大时呈现出最佳的换热效果。不同流动方向上,局部对流传热系数均随质量流量增大而显著增大,但随着加热功率、进口温度的升高而显著减小。然而,在水平流动方向和垂直向上流动方向上,当流体温度低于其假临界温度时,局部对流传热系数随系统压力的升高而显著减小。当流体温度高于其假临界温度时,局部对流传热系数则随系统压力的升高而逐渐增大。
中图分类号:
王磊, 曹雄金, 罗凯, 王艳, 费华. 不同流动方向上微型加热管内超临界CO2的换热特性[J]. 化工学报, 2023, 74(11): 4535-4547.
Lei WANG, Xiongjin CAO, Kai LUO, Yan WANG, Hua FEI. Heat transfer characteristics of supercritical CO2 in mini-type heating tube with the different flow directions[J]. CIESC Journal, 2023, 74(11): 4535-4547.
流动方向 | P | Tw | m | q | if,z | h |
---|---|---|---|---|---|---|
水平 | 0.5% | 0.4%~0.8% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~8.2% |
垂直向上 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~7.9% |
垂直向下 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.3% | 7.0%~8.4% |
表1 实验参数的不稳定性分析
Table 1 Uncertainties analysis of experimental parameters
流动方向 | P | Tw | m | q | if,z | h |
---|---|---|---|---|---|---|
水平 | 0.5% | 0.4%~0.8% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~8.2% |
垂直向上 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~7.9% |
垂直向下 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.3% | 7.0%~8.4% |
图3 不同流动方向上测试温度的实验值与理论值的比较
Fig.3 The comparisons between the experimental results of measure temperature and theoretical values of measure temperatures in different flow directions
图4 不同系统压力和不同流动方向条件下的局部对流传热系数
Fig.4 The local convective heat transfer coefficient under different system pressure and different flow direction conditions
图6 不同系统压力和不同流动方向条件下的相对局部对流传热系数百分比
Fig.6 The relative percentage of local convective heat transfer coefficient under different system pressure and different flow direction conditions
图7 不同质量流量和不同流动方向条件下的局部对流传热系数
Fig.7 The local convective heat transfer coefficient under different mass flow rate and different flow direction conditions
图8 不同质量流量和不同流动方向条件下的相对局部对流传热系数百分比
Fig.8 The relative percentage of local convective heat transfer coefficient under different mass flow rate and different flow direction conditions
图9 不同加热功率和不同流动方向条件下的局部对流传热系数
Fig.9 The local convective heat transfer coefficient under different heating power and different flow direction conditions
图10 不同加热功率和不同流动方向条件下的相对局部对流传热系数百分比
Fig.10 The relative percentage of local convective heat transfer coefficient under different heating power and different flow direction conditions
图11 不同进口温度和不同流动方向条件下的局部对流传热系数
Fig.11 The local convective heat transfer coefficient under different inlet temperature and different flow direction conditions
图12 不同进口温度和不同流动方向条件下的相对局部对流传热系数百分比
Fig.12 The relative percentage of local convective heat transfer coefficient under different inlet temperature and different flow direction conditions
文献 | Nusselt关联式 | 实验条件 |
---|---|---|
[ | 压力:74~120 bar 管径:0.7~2.16 mm 水平流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向上流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向下流动方向 | |
[ | 压力:74.6~102.6 bar 管径:4.5 mm 垂直流动方向 |
表2 不同实验条件下超临界CO2的Nusselt关联式
Table 2 Heat transfer correlations for supercritical carbon dioxide under different experimental conditions
文献 | Nusselt关联式 | 实验条件 |
---|---|---|
[ | 压力:74~120 bar 管径:0.7~2.16 mm 水平流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向上流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向下流动方向 | |
[ | 压力:74.6~102.6 bar 管径:4.5 mm 垂直流动方向 |
图13 水平流动方向上Nusselt实验值与Nusselt预测值的对比
Fig.13 The comparisons between the experimental results of Nusselt number and predicted values of Nusselt number in horizontal flow direction
图14 垂直向上流动方向上Nusselt实验值与Nusselt预测值的对比
Fig.14 The comparisons between the experimental results of Nusselt number and predicted values of Nusselt number in vertical upward flow direction
图15 垂直向下流动方向上Nusselt实验值与Nusselt预测值的对比
Fig.15 The comparisons between the experimental results of Nusselt number and predicted values of Nusselt number in vertical downward flow direction
1 | Cabeza L F, De Gracia A, Fernández A I, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
2 | Rao N T, Oumer A N, Jamaludin U K. State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147. |
3 | Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2022, 35(1): 290-306. |
4 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
5 | Huang D, Wu Z, Sunden B, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
6 | Yang Z, Cheng X, Zheng X H, et al. Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature[J]. International Journal of Heat and Mass Transfer, 2019, 128: 875-884. |
7 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
8 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
9 | Dang C B, Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide (Part 1): Experimental measurement[J]. International Journal of Refrigeration, 2004, 27(7): 736-747. |
10 | Dang C B, Iino K, Fukuoka K, et al. Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide[J]. International Journal of Refrigeration, 2007, 30(4): 724-731. |
11 | Huai X L, Koyama S, Zhao T S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science, 2005, 60(12): 3337-3345. |
12 | Oh H K, Son C H. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1230-1241. |
13 | Pitla S, Groll E, Ramadhyani S. Convective heat transfer from in-tube cooling of turbulent supercritical carbon dioxide (Part 2): Experimental data and numerical predictions[J]. HVAC&R Research, 2001, 7(4): 367-382. |
14 | Pitla S S, Groll E A, Ramadhyani S. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2 [J]. International Journal of Refrigeration, 2002, 25(7): 887-895. |
15 | Son C H, Park S J. An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube[J]. International Journal of Refrigeration, 2006, 29(4): 539-546. |
16 | Yoon S H, Kim J H, Hwang Y W, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration, 2003, 26(8): 857-864. |
17 | Liu Z B, He Y L, Yang Y F, et al. Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube[J]. Applied Thermal Engineering, 2014, 70(1): 307-315. |
18 | Adebiyi G A, Hall W B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer, 1976, 19(7): 715-720. |
19 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
20 | Jiang P X, Zhao C R, Shi R F, et al. Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4748-4756. |
21 | Jiang P X, Shi R F, Xu Y J, et al. Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube[J]. The Journal of Supercritical Fluids, 2006, 38(3): 339-346. |
22 | Jiang P X, Zhang Y, Xu Y J, et al. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. International Journal of Thermal Sciences, 2008, 47(8): 998-1011. |
23 | Jiang P X, Shi R F, Zhao C R, et al. Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 6283-6293. |
24 | Li Z H, Jiang P X, Zhao C R, et al. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1162-1171. |
25 | Zhang Q, Li H X, Kong X F, et al. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux[J]. International Journal of Heat and Mass Transfer, 2018, 122: 469-482. |
26 | Zhang S J, Xu X X, Liu C, et al. Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube[J]. Applied Thermal Engineering, 2019, 157: 113687. |
27 | Bruch A, Bontemps A, Colasson S. Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2589-2598. |
28 | Bae Y Y, Kim H Y, Kang D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. |
29 | Bae Y Y, Kim H Y. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 329-339. |
30 | Song J H, Kim H Y, Kim H, et al. Heat transfer characteristics of a supercritical fluid flow in a vertical pipe[J]. The Journal of Supercritical Fluids, 2008, 44(2): 164-171. |
31 | Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. |
32 | Kim D E, Kim M H. Two layer heat transfer model for supercritical fluid flow in a vertical tube[J]. The Journal of Supercritical Fluids, 2011, 58(1): 15-25. |
33 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
34 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
35 | Jiang P X, Zhang Y, Shi R F. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
36 | Wang L, Pan Y C, Der Lee J, et al. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120136. |
37 | Wang L, Pan Y C, Der Lee J, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. |
38 | Xie J Z, Liu D C, Yan H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
[1] | 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254. |
[2] | 乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857. |
[3] | 吕义高, 李庆, 文哲希. 正弦波纹流道印刷电路板换热器热工水力性能[J]. 化工学报, 2020, 71(S2): 142-151. |
[4] | 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141. |
[5] | 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336. |
[6] | 陈子丹, 罗会龙, 刘锦春, 曹振国, 赵新帅, 杨武彪. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
[7] | 许文杰, 李敏霞, 郭强. 润滑油对超临界二氧化碳对流换热特性的影响[J]. 化工学报, 2018, 69(5): 1982-1988. |
[8] | 李习都, 谢新玲, 张友全, 鞠全亮. 环己烷辅助超临界CO2流体制备淀粉酯[J]. 化工学报, 2017, 68(6): 2526-2534. |
[9] | 祝叶, 管宁, 李栋, 赵孝保, 刘志刚. 不同截面形状超疏水微肋阵内对流换热特性[J]. 化工学报, 2017, 68(1): 63-71. |
[10] | 刘新新, 叶建, 徐肖肖, 刘朝, 王开正, 李洪瑞, 白万金. 超临界CO2在水平螺旋管内的冷却换热特性[J]. 化工学报, 2016, 67(S2): 120-127. |
[11] | 白万金, 徐肖肖, 吴杨杨. 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4): 1244-1250. |
[12] | 严俊杰, 祝银海, 芦泽龙, 姜培学. 超临界压力碳氢燃料瞬态加热响应特性[J]. CIESC Journal, 2015, 66(S1): 65-70. |
[13] | 陶璐, 赵伶玲, 王镜凡. CO2浓度对混溶态(CO2+正己烷)/盐水界面微观特性的影响[J]. 化工学报, 2015, 66(7): 2601-2606. |
[14] | 孟繁梅, 吕惠生, 张敏华, 李永辉, 连峰, 孙艳朋. 超临界流体干燥技术制备液相色谱填料基质多孔硅球[J]. 化工学报, 2015, 66(6): 2313-2320. |
[15] | 龚圣, 程杏安, 周新华, 尹国强, 程江, 王浩波. 纳米锑掺杂氧化锡制备中超临界CO2干燥的工艺优化及动力学[J]. 化工学报, 2015, 66(4): 1593-1599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||