化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4527-4534.DOI: 10.11949/0438-1157.20230897
收稿日期:
2023-08-30
修回日期:
2023-10-24
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
龚帅
作者简介:
丁圣洁(1999—),男,硕士研究生,sjtu.dsj@sjtu.edu.cn
基金资助:
Shengjie DING(), Shasha MA, Shuai GONG(
)
Received:
2023-08-30
Revised:
2023-10-24
Online:
2023-11-25
Published:
2024-01-22
Contact:
Shuai GONG
摘要:
气液界面温度、曲率及蒸发弯月面附近的微观传热机制对热管传热性能的准确预测存在重要影响。采用将蒸发弯月面区域的微观传热与宏观区域传热耦合的方法,对梯形沟槽式铜-水热管蒸发端的传热进行模拟,研究了气液界面温度、曲率以及蒸发弯月面区域的微观传热对热管蒸发端径向传热系数的影响。结果表明:蒸发弯月面附近微观区域的气液界面的曲率和固液分子吸附力(分离压力效应)对界面温度的影响不可忽略;微观区域的传热传质对宏观区域的表观接触角以及热管壁面内的宏观温度分布存在显著影响,考虑微观区域传热传质计算出的宏观固体区域的温差更小;若假设气液界面温度Tiv等于蒸气的饱和温度Tsat,计算出的径向传热系数为hrad = 7.8 W·cm-2·K-1,而考虑微观区域传热传质后得到的径向传热系数为hrad = 4.2 W·cm-2·K-1。
中图分类号:
丁圣洁, 马莎莎, 龚帅. 考虑蒸发弯月面区域微观传热的热管径向传热系数研究[J]. 化工学报, 2023, 74(11): 4527-4534.
Shengjie DING, Shasha MA, Shuai GONG. Study on radial heat transfer coefficient of heat pipes considering microscale heat transfer in evaporating meniscus region[J]. CIESC Journal, 2023, 74(11): 4527-4534.
图3 计算区域几何结构、网格划分及微观/宏观区域交界处局部放大图
Fig.3 Computational domain and enlarged view of the grid structure at the interface between micro-region and macro-region
模型 | hrad /(W·cm-2·K-1) |
---|---|
当前模型(网格数134970个) | 2.36 |
当前模型(网格数534624个) | 2.32 |
简化模型(网格数534624个) | 7.41 |
实验结果 | 2.54 |
表1 网格无关性验证及实验结果对比
Table 1 Grid independency verification and comparison with experimental result
模型 | hrad /(W·cm-2·K-1) |
---|---|
当前模型(网格数134970个) | 2.36 |
当前模型(网格数534624个) | 2.32 |
简化模型(网格数534624个) | 7.41 |
实验结果 | 2.54 |
模型 | (Tf | (W·cm-2) | (Qmic/Qin)/% | hrad/ (W·cm-2·K-1) |
---|---|---|---|---|
当前模型[Tiv = T(ξ)] | 1.83 | 7.69 | 52 | 4.2 |
简化模型(Tiv = Tsat) | 1.83 | 14.27 | 94 | 7.8 |
Schneider等[ | — | — | — | 7.1 |
Shekriladze等[ | — | — | — | 6.9 |
表2 主要计算结果与简化模型和经验关联式结果的比较
Table 2 Comparison of simulation results with result of simplified model and correlations
模型 | (Tf | (W·cm-2) | (Qmic/Qin)/% | hrad/ (W·cm-2·K-1) |
---|---|---|---|---|
当前模型[Tiv = T(ξ)] | 1.83 | 7.69 | 52 | 4.2 |
简化模型(Tiv = Tsat) | 1.83 | 14.27 | 94 | 7.8 |
Schneider等[ | — | — | — | 7.1 |
Shekriladze等[ | — | — | — | 6.9 |
1 | Yan B H, Wang C, Li L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. |
2 | Ling L, Zhang Q, Yu Y B, et al. A state-of-the-art review on the application of heat pipe system in data centers[J]. Applied Thermal Engineering, 2021, 199: 117618. |
3 | Huang J L, Wang C L, Guo K L, et al. Heat transfer analysis of heat pipe cooled device with thermoelectric generator for nuclear power application[J]. Nuclear Engineering and Design, 2022, 390: 111652. |
4 | Ma Y G, Han W B, Xie B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473. |
5 | Shoeibi S, Ali Agha Mirjalily S, Kargarsharifabad H, et al. A comprehensive review on performance improvement of solar desalination with applications of heat pipes[J]. Desalination, 2022, 540: 115983. |
6 | Sun Y L, Zhang S W, Chen G, et al. Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors[J]. Applied Thermal Engineering, 2020, 170: 114970. |
7 | 田中轩, 王长宏, 郑焕培, 等. LED平板热管散热系统的性能分析[J]. 化工学报, 2017, 68(S1): 155-161. |
Tian Z X, Wang C H, Zheng H P, et al. Heat transfer characteristic of flat plate heat pipe cooling system for LED[J]. CIESC Journal, 2017, 68(S1): 155-161. | |
8 | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
Wei J J, Liu L, Yang X P. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices[J]. CIESC Journal, 2023, 74(1): 60-73. | |
9 | Zhang X, Jiang D Y, Wang H, et al. Experimental analysis on the evaporator startup behaviors in a trapezoidally grooved heat pipe[J]. Applied Thermal Engineering, 2021, 199: 117558. |
10 | Khalid S U, Hasnain S, Ali H M, et al. Experimental investigation of aluminum fins on relative thermal performance of sintered copper wicked and grooved heat pipes[J]. Progress in Nuclear Energy, 2022, 152: 104374. |
11 | Gökçe G, Kurt C, Odabaşı G, et al. Comprehensive three-dimensional hydrodynamic and thermal modeling of steady-state operation of a flat grooved heat pipe[J]. International Journal of Multiphase Flow, 2023, 160: 104370. |
12 | Fravallo P Y, Prat M, Platel V. Numerical study of flow and heat transfer in the vapour grooves of a loop heat pipe evaporator[J]. International Journal of Thermal Sciences, 2022, 171: 107198. |
13 | Zhang D W, He Z T, Guan J, et al. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: an experimental study[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122100. |
14 | Chen J W, Cen J W, Huang W B, et al. Multiphase flow and heat transfer characteristics of an extra-long gravity-assisted heat pipe: an experimental study[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120564. |
15 | Pagliarini L, Cattani L, Mameli M, et al. Global and local heat transfer behaviour of a three-dimensional pulsating heat pipe: combined effect of the heat load, orientation and condenser temperature[J]. Applied Thermal Engineering, 2021, 195: 117144. |
16 | Wayner P C, Kao Y K, LaCroix L V. The interline heat-transfer coefficient of an evaporating wetting film[J]. International Journal of Heat and Mass Transfer, 1976, 19(5): 487-492. |
17 | Schneider G, Yovanovich M, Wehrle V. Thermal analysis of trapezoidal grooved heat pipe evaporator walls[C]//Proceedings of the 11th Thermophysics Conference. Reston, Virigina: AIAA, 1976: AIAA1976-481. |
18 | Shekriladze I G, Rusishvili J G. Evaporation and condensation on grooved capillary surfaces[C]//Proc. 6th Int. Heat Pipe Conf. 1987: 234-239. |
19 | 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226. |
Tian D M, Wu Y P, Chen F J. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM[J]. CIESC Journal, 2020, 71(S1): 220-226. | |
20 | 张磊, 戴叶, 陈兴伟, 等. 折弯异型对铜-水热管传热性能影响的实验研究[J]. 化工学报, 2021, 72(10): 5132-5141. |
Zhang L, Dai Y, Chen X W, et al. Experimental research on influence of abnormal shape on heat transfer performance of copper-water heat pipe[J]. CIESC Journal, 2021, 72(10): 5132-5141. | |
21 | Wayner P C. Adsorption and capillary condensation at the contact line in change of phase heat transfer[J]. International Journal of Heat and Mass Transfer, 1982, 25(5): 707-713. |
22 | Wang H, Garimella S V, Murthy J Y. Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3933-3942. |
23 | Hu Z H, Gong S A. Mesoscopic model for disjoining pressure effects in nanoscale thin liquid films and evaporating extended meniscuses[J]. Langmuir, 2023, 39(37): 13359-13370. |
24 | Stephan P C, Busse C A. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls[J]. International Journal of Heat and Mass Transfer, 1992, 35(2): 383-391. |
25 | Lay J H, Dhir V K. Shape of a vapor stem during nucleate boiling of saturated liquids[J]. Journal of Heat Transfer, 1995, 117(2): 394-401. |
26 | Raj R, Kunkelmann C, Stephan P, et al. Contact line behavior for a highly wetting fluid under superheated conditions[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2664-2675. |
27 | Kamotani Y. Evaporator film coefficients of grooved heat pipes[C]//Proceedings of the 3rd International Heat Pipe Conference. Reston, Virigina: AIAA, 1978: AIAA1978-404. |
28 | Holm F W, Goplen S P. Heat transfer in the meniscus thin-film transition region[J]. Journal of Heat Transfer, 1979, 101(3): 543-547. |
29 | Derjaguin B V, Nerpin S V, Churaev N V. Effect of film transfer upon evaporation of liquids from capillaries[J]. Bulletin Rilem, 1965, 29: 93-98. |
30 | Israelachvili J N. Intermolecular and Surface Forces[M]. 3rd ed. Academic Press, 2011. |
31 | 高洪敬. 无量纲毛细压力函数及毛细压力对流动特性影响的分形分析[D]. 武汉: 华中科技大学, 2014. |
Gao H J. Dimensionless capillary pressure function and fractal analysis of the influence of capillary pressure on flow characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2014. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[7] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[8] | 蒋祎璠, 刘蕾, 赵耀, 代彦军. UVLED光学元件液冷散热系统性能研究[J]. 化工学报, 2023, 74(S1): 154-160. |
[9] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[10] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[11] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[12] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[13] | 申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205. |
[14] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[15] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 868
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||