化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 142-151.DOI: 10.11949/0438-1157.20200491
收稿日期:
2020-05-06
修回日期:
2020-05-12
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
文哲希
作者简介:
吕义高(1996—),男,硕士研究生,基金资助:
Yigao LYU(),Qing LI,Zhexi WEN()
Received:
2020-05-06
Revised:
2020-05-12
Online:
2020-11-06
Published:
2020-11-06
Contact:
Zhexi WEN
摘要:
印刷电路板换热器换热性能好、紧凑性高,在超临界CO2布雷顿循环等领域有着广阔的应用前景。本文通过数值计算,首先比较了湍流条件下15°~30°范围内不同波纹角对正弦波纹流道流动换热性能的影响,结果表明,波纹流道内的换热效果随波纹角的增大而增强(换热量最大增长了7.1%),且热侧的压降相对于冷侧增大更明显。其次,分节研究并分析了流道内不同区域的局部流动换热特性,发现了在热侧和冷侧入口区域各存在着1个大、小温差区,同时,需要对入口处进行合理的优化设计以减小入口处的压降。最后,进一步设计了一种“正弦波纹+直通道”的复合结构并初步探究了该结构的流动换热性能。
中图分类号:
吕义高, 李庆, 文哲希. 正弦波纹流道印刷电路板换热器热工水力性能[J]. 化工学报, 2020, 71(S2): 142-151.
Yigao LYU, Qing LI, Zhexi WEN. Thermal-hydraulic performance of sinusoidal channel printed circuit heat exchanger[J]. CIESC Journal, 2020, 71(S2): 142-151.
参数 | 冷侧流体 | 热侧流体 | ||
---|---|---|---|---|
入口 | 出口 | 入口 | 出口 | |
Tin /K | 350 | — | 675 | — |
pout /MPa | — | 20 | — | 8 |
min /(kg?h) | 0.6、1.0、1.4、1.8 | — | 0.6、1.0、1.4、1.8 | — |
表1 边界条件
Table 1 Boundary conditions
参数 | 冷侧流体 | 热侧流体 | ||
---|---|---|---|---|
入口 | 出口 | 入口 | 出口 | |
Tin /K | 350 | — | 675 | — |
pout /MPa | — | 20 | — | 8 |
min /(kg?h) | 0.6、1.0、1.4、1.8 | — | 0.6、1.0、1.4、1.8 | — |
1 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development [J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
2 | Dostal V, Hejzlar P, Driscoll M J. High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors [J]. Nuclear Technology, 2017, 154(3): 265-282. |
3 | Mecheri M, Moullec Y L. Supercritical CO2 Brayton cycles for coal-fired power plants [J]. Energy, 2016, 103: 758-771. |
4 | Sharan P, Neises T, Mctigue J D, et al. Cogeneration using multi-effect distillation and a solar-powered supercritical carbon dioxide Brayton cycle [J]. Desalination, 2019, 459: 20-33. |
5 | Olumayegun O, Wang M H. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes [J]. Fuel, 2019, 249: 89-102. |
6 | Tsuzuki N, Kato Y, Ishiduka T. High performance printed circuit heat exchanger [J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
7 | Meshram A, Jaiswal A K, Khivsara S D, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications [J]. Applied Thermal Engineering, 2016, 109: 861-870. |
8 | Lee S M, Kim K Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations [J]. Heat and Mass Transfer, 2013, 49(7): 1021-1028. |
9 | Lee S M, Kim K Y. Thermal performance of a double-faced printed circuit heat exchanger with thin plates [J]. Journal of Thermophysics and Heat Transfer, 2014, 28(2): 251-257. |
10 | Kim D E, Kim M H, Cha J E, et al. Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model [J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276. |
11 | Kwon J G, Kim T H, Park S H, et al. Optimization of airfoil-type PCHE for the recuperator of small scale Brayton cycle by cost-based objective function [J]. Nuclear Engineering and Design, 2016, 298: 192-200. |
12 | Chu W X, Li X H, Ma T, et al. Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins [J]. Applied Thermal Engineering, 2017, 114: 1309-1318. |
13 | Cui X Y, Guo J F, Huai X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2 [J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366. |
14 | Baik S, Kim S G, Lee J, et al. Study on CO2-water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application [J]. Applied Thermal Engineering, 2017, 113: 1536-1546. |
15 | Aneesh A M, Sharma A, Srivasatava A, et al. Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger (PCHE) [J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315. |
16 | Baik Y J, Jeon S, Kim B, et al. Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors [J]. International Journal of Heat and Mass Transfer, 2017, 114: 809-815. |
17 | Wang J, Sun Y W, Lu M J, et al. Study on the thermal-hydraulic performance of sinusoidal channeled printed circuit heat exchanger [J]. Energy Procedia, 2019, 158: 5679-5684. |
18 | Yang Y, Li H Z, Yao M Y, et al. Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE [J]. International Journal of Heat and Mass Transfer, 2019, 135: 33-43. |
19 | Wen Z X, Lü Y G, Li Q, et al. Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters [J]. International Journal of Heat and Mass Transfer, 2020, 147: 118922. |
20 | Wen Z X, Lü Y G, Li Q. Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers [J]. Science China Technological Sciences, 2020, 63(4): 655-667. |
21 | Kim I H, No H C, Lee J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations [J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. |
22 | Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA, 1994, 32(8): 1598-1605. |
23 | National Institute of Standards and Technology. NIST Chemistry Webbook [DB/OL]. [2019-03-15]. http: //webbook. nist. gov/chemistry/fluid. html |
24 | Li Z H, Jiang P X, Zhao C R, et al. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube [J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1162-1171. |
25 | Liu W, Liu Z C, Guo Z Y, Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement [J]. Science Bulletin, 2009, 54: 3579-3586. |
26 | Koo G W, Lee S M, Kim K Y. Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling [J]. Applied Thermal Engineering, 2014, 72(1): 90-96. |
27 | Pasquier U, Chu W X, Zeng M, et al. CFD simulation and optimization of fluid flow distribution inside printed circuit heat exchanger headers [J]. Numerical Heat Transfer Part A - Applications, 2016, 69(7): 710-726. |
28 | Chu W X, Bennett K, Cheng J, et al. Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger [J]. Applied Thermal Engineering, 2019, 146: 805-814. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||