化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4548-4558.DOI: 10.11949/0438-1157.20230970
收稿日期:
2023-09-21
修回日期:
2023-11-15
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
张东辉
作者简介:
徐健(1997—),男,硕士研究生,xjehome@163.com
Jian XU(), Donghui ZHANG(), Jun HUANG, Lei FENG, Fengyuan YANG, Xiang GAO
Received:
2023-09-21
Revised:
2023-11-15
Online:
2023-11-25
Published:
2024-01-22
Contact:
Donghui ZHANG
摘要:
微通道沸腾冷却在电子器件方面的应用近年备受关注。将多孔烧结微通道作为微电子器件的有效冷却方案进行了流动沸腾传热性能的实验研究,重点围绕热通量和通道宽度对流动沸腾特性的影响。烧结微通道采用铜粉加压烧结的方法,使用150 μm树枝状铜粉进行烧结,制备了三种通道宽度分别为1.8、0.6和0.2 mm的并联微通道,对应的槽数分别为11、22和33槽。研究发现:存在最优通道宽度,其综合沸腾换热效果达到最优。在4 L/h流量下,中等宽度样品最高传热系数可达200 kW/(m2·K),临界热通量可达到170 W/cm2左右。可视化研究发现:通道宽度对压力脉动曲线会造成很大影响,适中的通道宽度压力脉动曲线更为有序,大大缓解压力脉动从而提升微通道的沸腾换热性能。
中图分类号:
徐健, 张东辉, 黄俊, 冯磊, 杨丰源, 高祥. 结构参数对烧结微通道流动沸腾性能的影响[J]. 化工学报, 2023, 74(11): 4548-4558.
Jian XU, Donghui ZHANG, Jun HUANG, Lei FENG, Fengyuan YANG, Xiang GAO. Effect of structural parameters on flow boiling performance of sintered microchannels[J]. CIESC Journal, 2023, 74(11): 4548-4558.
图1 微通道实验测试系统1—恒温水箱;2—调节阀;3—微型齿轮泵;4—流量计;5—节流阀;6—压力传感器;7—微通道热沉室;8—调节阀;9—储水水箱;10—高速摄相机;11—直流电源;12—同步系统;13—NI数据采集系统;14—计算机
Fig.1 Schematic diagram of microchannel experimental test system
铜粉粒径/μm | 微通道深度/mm | 微通道数目 | 微通道宽度/mm |
---|---|---|---|
150 | 1.2 | 11,22,33 | 1.8,0.6,0.2 |
表1 烧结微通道结构参数
Table 1 Sintered microchannel structural parameters
铜粉粒径/μm | 微通道深度/mm | 微通道数目 | 微通道宽度/mm |
---|---|---|---|
150 | 1.2 | 11,22,33 | 1.8,0.6,0.2 |
1 | Chen Z P, Narita A, Müllen K. Graphene nanoribbons: on-surface synthesis and integration into electronic devices[J]. Advanced Materials, 2020, 32(45): 2001893. |
2 | Agamloh E, von Jouanne A, Yokochi A. An overview of electric machine trends in modern electric vehicles[J]. Machines, 2020, 8(2): 20. |
3 | 章学来, 刘田田, 赵群志, 等. 不同材料和球径的多孔球层内水的过冷度分析[J]. 化工学报, 2015, 66(6): 2011-2016. |
Zhang X L, Liu T T, Zhao Q Z, et al. Analysis of supercooling degree of water in ball-packed porous structure of different materials and diameters[J]. CIESC Journal, 2015, 66(6): 2011-2016. | |
4 | Ali Majedi S, Azizi S, Peyghambarzadeh S M, et al. Investigation and measurement of crude oil heat transfer coefficient in forced convection and subcooled flow boiling heat transfer[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(12): 5805-5818. |
5 | Mukherjee S, Poloju V, Mishra P C. Heat transfer, exergoeconomic performance and sustainability impact of a novel CuO + MgO + GO/water ternary nanofluid[J]. Applied Thermal Engineering, 2023, 235: 121391. |
6 | Devahdhanush V S, Mudawar I, Nahra H K, et al. Experimental heat transfer results and flow visualization of vertical upflow boiling in Earth gravity with subcooled inlet conditions — in preparation for experiments onboard the International Space Station[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122603. |
7 | Ma Z Y, Fang X D. An overview of gravity effects on flow boiling instabilities[J]. Progress in Aerospace Sciences, 2022, 128: 100764. |
8 | Dedov A V. A review of modern methods for enhancing nucleate boiling heat transfer[J]. Thermal Engineering, 2019, 66(12): 881-915. |
9 | Ongena J, Ogawa Y. Nuclear fusion: status report and future prospects[J]. Energy Policy, 2016, 96: 770-778. |
10 | Mukherjee S, Ebrahim S, Mishra P C, et al. A review on pool and flow boiling enhancement using nanofluids: nuclear reactor application[J]. Processes, 2022, 10(1): 177. |
11 | Giustini G. Modelling of boiling flows for nuclear thermal hydraulics applications—a brief review[J]. Inventions, 2020, 5(3): 47. |
12 | Li X D. Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—from nanoscale to macroscale[J]. Experimental and Computational Multiphase Flow, 2021, 3(4): 233-241. |
13 | Fan S M, Duan F. A review of two-phase submerged boiling in thermal management of electronic cooling[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119324. |
14 | Hoang C H, Rangarajan S, Manaserh Y, et al. A review of recent developments in pumped two-phase cooling technologies for electronic devices[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(10): 1565-1582. |
15 | Zhang X L, Ji Z, Wang J F, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
16 | Lee J, Mudawar I. Low-temperature two-phase micro-channel cooling for high-heat-flux thermal management of defense electronics[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL: IEEE, 2008: 132-144. |
17 | Law M, Lee P S. Effects of varying secondary channel widths on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 101: 313-326. |
18 | Clark M D, Weibel J A, Garimella S V. Impact of pressure drop oscillations and parallel channel instabilities on microchannel flow boiling and critical heat flux[J]. International Journal of Multiphase Flow, 2023, 161: 104380. |
19 | Lee J, Mudawar I. Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks(Part 1): Experimental methods and flow visualization results[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4315-4326. |
20 | Lee J, Mudawar I. Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks(Part 2): Subcooled boiling pressure drop and heat transfer[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4327-4341. |
21 | Zhang L A, Wang E N, Goodson K E, et al. Phase change phenomena in silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1572-1582. |
22 | Sofia K. Experimental study on local heat transfer coefficients and the effect of aspect ratio on flow boiling in a microchannel[D]. Edinburgh, Scotland, UK: University of Edinburgh, 2018. |
23 | Harirchian T, Garimella S V. Microchannel size effects on local flow boiling heat transfer to a dielectric fluid[J]. International Journal of Heat and Mass Transfer, 2008, 51(15/16): 3724-3735. |
24 | Harirchian T, Garimella S V. The critical role of channel cross-sectional area in microchannel flow boiling heat transfer[J]. International Journal of Multiphase Flow, 2009, 35(10): 904-913. |
25 | Deng D X, Xie Y L, Huang Q S, et al. Flow boiling performance of Ω-shaped reentrant copper microchannels with different channel sizes[J]. Experimental Thermal and Fluid Science, 2015, 69: 8-18. |
26 | Deng D X, Zhang Z K, Wan W, et al. Investigation on burr formation characteristics in micro milling of Ω-shaped reentrant microchannels[J]. Journal of Manufacturing Processes, 2022, 80: 754-764. |
27 | Zhang S W, Sun Y L, Yuan W, et al. Effects of heat flux, mass flux and channel width on flow boiling performance of porous interconnected microchannel nets[J]. Experimental Thermal and Fluid Science, 2018, 90: 310-318. |
28 | Hung T C, Yan W M, Wang X D, et al. Optimal design of geometric parameters of double-layered microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3262-3272. |
29 | Ling W S, Zhou W, Liu C Z, et al. Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement[J]. Applied Thermal Engineering, 2020, 170: 115011. |
30 | Wu H Y, Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2519-2525. |
31 | do Nascimento F J, Leão H L S L, Ribatski G. An experimental study on flow boiling heat transfer of R134a in a microchannel-based heat sink[J]. Experimental Thermal and Fluid Science, 2013, 45: 117-127. |
32 | Zhang D H, Mao J J, Qu J, et al. Characterizing effect of particle size on flow boiling in sintered porous-microchannels[J]. Applied Thermal Engineering, 2023, 229: 120571. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[3] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[6] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||