化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1642-1654.DOI: 10.11949/0438-1157.20231418
吕田田(), 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪(
)
收稿日期:
2024-01-03
修回日期:
2024-03-31
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
石琪
作者简介:
吕田田(1999—),女,硕士研究生,lvtian0609@163.com
基金资助:
Tiantian LYU(), Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI(
)
Received:
2024-01-03
Revised:
2024-03-31
Online:
2024-04-25
Published:
2024-06-06
Contact:
Qi SHI
摘要:
经过生物质酸性催化转化的5-羟甲基糠醛(5-HMF)原液的组成为低浓度水溶液、多组分酸性副产物乙酰丙酸(LA)和甲酸(FA),因此需要设计疏水、耐酸和高选择性的吸附剂来分离5-HMF。以高N的沸石型四氮唑-咪唑骨架材料(ZTIFs)为前体,通过调控碳化和活化条件制备具有耐酸性、疏水性和合适微介孔分布的多孔碳,利用多孔碳和5-HMF的π-π作用可实现含酸水溶液中5-HMF的高效富集分离。以ZTIF-8为前体,通过调控碳化温度和活化碱碳比,制备并筛选三种具有不同N含量和微介孔分布的ZTIF-8基多孔碳;建立ZTIF-8基多孔碳N含量和微介孔分布与5-HMF吸附分离性能的关系;具有低N含量和丰富大微孔小介孔(12~30 Å,1 Å=0.1 nm)的NCZTIF-8700C-800A2是从含酸性副产物水溶液中高效富集分离5-HMF的吸附剂。
中图分类号:
吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654.
Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural[J]. CIESC Journal, 2024, 75(4): 1642-1654.
Samples | Bulk N/% | BET/(m²·g-1) | Total pore volume/ (cm³·g-1) | Cumulative pore volume/(cm3·g-1) | ||||
---|---|---|---|---|---|---|---|---|
<12 Å | 12~22 Å | 22~30 Å | 12~30 Å | 30~60 Å | ||||
ZTIF-8 | — | 1570.5 | 0.59 | 0.31 | 0.24 | 0 | 0.24 | 0 |
NCZTIF-8700C | 21.81 | 853.3 | 0.41 | 0.32 | 0 | 0 | 0 | 0 |
NCZTIF-8700C-800A0.5 | 12.33 | 1863.5 | 0.86 | 0.51 | 0.29 | 0 | 0.29 | 0 |
NCZTIF-8700C-800A1 | 6.85 | 3096.0 | 1.96 | 0.50 | 0.72 | 0.63 | 1.35 | 0 |
NCZTIF-8700C-800A2 | 1.62 | 2701.4 | 2.39 | 0.36 | 0.36 | 0.88 | 1.24 | 0.67 |
NCZTIF-8700C-800A4 | 1.30 | 2643.5 | 2.83 | 0.29 | 0.43 | 0.32 | 0.75 | 1.43 |
表1 ZTIF-8、NCZTIF-8700C和NCZTIF-8700C-800A z 的孔结构和元素分析
Table 1 Pore structures and elemental analysis of ZTIF-8, NCZTIF-8700C and NCZTIF-8700C-800A z
Samples | Bulk N/% | BET/(m²·g-1) | Total pore volume/ (cm³·g-1) | Cumulative pore volume/(cm3·g-1) | ||||
---|---|---|---|---|---|---|---|---|
<12 Å | 12~22 Å | 22~30 Å | 12~30 Å | 30~60 Å | ||||
ZTIF-8 | — | 1570.5 | 0.59 | 0.31 | 0.24 | 0 | 0.24 | 0 |
NCZTIF-8700C | 21.81 | 853.3 | 0.41 | 0.32 | 0 | 0 | 0 | 0 |
NCZTIF-8700C-800A0.5 | 12.33 | 1863.5 | 0.86 | 0.51 | 0.29 | 0 | 0.29 | 0 |
NCZTIF-8700C-800A1 | 6.85 | 3096.0 | 1.96 | 0.50 | 0.72 | 0.63 | 1.35 | 0 |
NCZTIF-8700C-800A2 | 1.62 | 2701.4 | 2.39 | 0.36 | 0.36 | 0.88 | 1.24 | 0.67 |
NCZTIF-8700C-800A4 | 1.30 | 2643.5 | 2.83 | 0.29 | 0.43 | 0.32 | 0.75 | 1.43 |
图6 25℃下NCZTIF-8700C-800A z 对单组分5-HMF、LA和FA的静态吸附等温线
Fig.6 Static adsorption isotherms of NCZTIF-8700C-800A z for single-component 5-HMF,LA and FA at 25℃
Samples | Single-component Qe/(mg·g-1) | Ternary-component Qi,e/(mg·g-1) | Si,j | |||||
---|---|---|---|---|---|---|---|---|
5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 842.0 | 399.7 | 86.1 | 555.8 | 60.8 | 9.5 | 5.0 | 12.3 |
NCZTIF-8700C-800A2 | 1072.7 | 626.6 | 111.5 | 803.6 | 103.5 | 5.8 | 4.2 | 29.0 |
NCZTIF-8700C-800A4 | 968.0 | 451.0 | 89.2 | 727.9 | 71.6 | 3.1 | 5.6 | 49.4 |
表2 NCZTIF-8700C-800A z 的静态吸附量和选择性汇总
Table 2 Summary of static adsorption capacity and selectivity of NCZTIF-8700C-800A z
Samples | Single-component Qe/(mg·g-1) | Ternary-component Qi,e/(mg·g-1) | Si,j | |||||
---|---|---|---|---|---|---|---|---|
5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF (5.0%) | LA (2.5%) | FA (1.0%) | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 842.0 | 399.7 | 86.1 | 555.8 | 60.8 | 9.5 | 5.0 | 12.3 |
NCZTIF-8700C-800A2 | 1072.7 | 626.6 | 111.5 | 803.6 | 103.5 | 5.8 | 4.2 | 29.0 |
NCZTIF-8700C-800A4 | 968.0 | 451.0 | 89.2 | 727.9 | 71.6 | 3.1 | 5.6 | 49.4 |
Samples | Ternary-component Qi,ads/(mg·g-1) | Si,j | |||
---|---|---|---|---|---|
5.0% 5-HMF | 2.5%LA | 1.0%FA | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 774.3 | 88.6 | 29.7 | 4.4 | 5.2 |
NCZTIF-8700C-800A2 | 1092.3 | 109.5 | 15.5 | 5.2 | 14.3 |
NCZTIF-8700C-800A4 | 1040.3 | 107.1 | 6.8 | 5.1 | 30.4 |
表3 NCZTIF-8700C-800A z 的动态柱吸附量和选择性汇总
Table 3 Summary of dynamic column adsorption capacity and selectivity of NCZTIF-8700C-800A z
Samples | Ternary-component Qi,ads/(mg·g-1) | Si,j | |||
---|---|---|---|---|---|
5.0% 5-HMF | 2.5%LA | 1.0%FA | 5-HMF/LA | 5-HMF/FA | |
NCZTIF-8700C-800A1 | 774.3 | 88.6 | 29.7 | 4.4 | 5.2 |
NCZTIF-8700C-800A2 | 1092.3 | 109.5 | 15.5 | 5.2 | 14.3 |
NCZTIF-8700C-800A4 | 1040.3 | 107.1 | 6.8 | 5.1 | 30.4 |
1 | Gervais E, Shammugam S, Friedrich L, et al. Raw material needs for the large-scale deployment of photovoltaics—effects of innovation-driven roadmaps on material constraints until 2050[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110589. |
2 | Galimova T, Ram M, Bogdanov D, et al. Global demand analysis for carbon dioxide as raw material from key industrial sources and direct air capture to produce renewable electricity-based fuels and chemicals[J]. Journal of Cleaner Production, 2022, 373: 133920. |
3 | Martin N, Madrid-López C, Villalba-Méndez G, et al. New techniques for assessing critical raw material aspects in energy and other technologies[J]. Environmental Science & Technology, 2022, 56(23): 17236-17245. |
4 | Mujtaba M, Fernandes Fraceto L, Fazeli M, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics[J]. Journal of Cleaner Production, 2023, 402: 136815. |
5 | Zhang B, Biswal B K, Zhang J J, et al. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives[J]. Chemical Reviews, 2023, 123(11): 7193-7294. |
6 | Xu C, Paone E, Rodríguez-Padrón D, et al. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural[J]. Chemical Society Reviews, 2020, 49(13): 4273-4306. |
7 | Zhang X G, Wilson K, Lee A F. Heterogeneously catalyzed hydrothermal processing of C5—C6 sugars[J]. Chemical Reviews, 2016, 116(19): 12328-12368. |
8 | Slak J, Pomeroy B, Kostyniuk A, et al. A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural[J]. Chemical Engineering Journal, 2022, 429: 132325. |
9 | Wang H Y, Zhu C H, Li D, et al. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 227-247. |
10 | Hu L, Wu Y R, Li M W, et al. Highly selective adsorption of 5-hydroxymethylfurfural from multicomponent mixture by simple pH controlled in batch and fixed-bed column studies: competitive isotherms, kinetic and breakthrough curves simulation[J]. Separation and Purification Technology, 2022, 299: 121756. |
11 | Hu L, Wu Z, Jiang Y T, et al. Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110317. |
12 | 石宁, 刘琪英, 王铁军, 等. 葡萄糖催化脱水制取5-羟甲基糠醛研究进展[J]. 化工进展, 2012, 31(4): 792-800. |
Shi N, Liu Q Y, Wang T J, et al. Preparation of 5-hydroxymethylfurfural from glucose by catalytic dehydration[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 792-800. | |
13 | Chen S, Wojcieszak R, Dumeignil F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117. |
14 | Sayed M, Warlin N, Hulteberg C, et al. 5-Hydroxymethylfurfural from fructose: an efficient continuous process in a water-dimethyl carbonate biphasic system with high yield product recovery[J]. Green Chemistry, 2020, 22(16): 5402-5413. |
15 | Jeong G T, Kim S K. Statistical optimization of levulinic acid and formic acid production from lipid-extracted residue of Chlorella vulgaris [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105142. |
16 | Enomoto K, Hosoya T, Miyafuji H. High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system[J]. Cellulose, 2018, 25(4): 2249-2257. |
17 | Wei Z J, Liu Y X, Thushara D, et al. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid[J]. Green Chemistry, 2012, 14(4): 1220-1226. |
18 | Johnson R L, Perras F A, Hanrahan M P, et al. Condensed phase deactivation of solid Brønsted acids in the dehydration of fructose to hydroxymethylfurfural[J]. ACS Catalysis, 2019, 9(12): 11568-11578. |
19 | Wang H Y, Cui J J, Zhao Y L, et al. Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids[J]. Green Chemistry, 2021, 23(1): 405-411. |
20 | Román-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933-1937. |
21 | Sun X F, Liu Z H, Xue Z M, et al. Extraction of 5-HMF from the conversion of glucose in ionic liquid [Bmim]Cl by compressed carbon dioxide[J]. Green Chemistry, 2015, 17(5): 2719-2722. |
22 | Yang Q, Runge T. Cross-linked polyethylenimine for selective adsorption and effective recovery of lignocellulose-derived organic acids and aldehydes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 933-943. |
23 | Chen X F, Li H L, Ji X R, et al. Preparation, separation and purification of 5-hydroxymethylfurfural from sugarcane molasses by a self-synthesized hyper-cross-linked resin[J]. Separation and Purification Technology, 2023, 315: 123661. |
24 | Yabushita M, Li P, Kobayashi H, et al. Complete furanics-sugar separations with metal-organic framework NU-1000[J]. Chemical Communications, 2016, 52(79): 11791-11794. |
25 | Yoo W C, Rajabbeigi N, Mallon E E, et al. Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents[J]. Microporous and Mesoporous Materials, 2014, 184: 72-82. |
26 | 赵宇, 石琪, 董晋湘. ZIFs椭圆形孔窗的精细调控及糠醛/5-羟甲基糠醛吸附分离性能研究[J]. 化工学报, 2021, 72(1): 555-568. |
Zhao Y, Shi Q, Dong J X. Fine adjustment of elliptical windows of ZIFs and performances of adsorptive separation of furfural/5-hydroxymethylfurfural[J]. CIESC Journal, 2021, 72(1): 555-568. | |
27 | Hu L, Zheng J Y, Li Q, et al. Adsorption of 5-hydroxymethylfurfural, levulinic acid, formic acid, and glucose using polymeric resins modified with different functional groups[J]. ACS Omega, 2021, 6(26): 16955-16968. |
28 | Hu L, Tao S H, Xian J T, et al. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step[J]. Chinese Journal of Chemical Engineering, 2022, 43: 230-239 |
29 | Zhang Y B, Luo Q X, Lu M H, et al. Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration [J]. Chemical Engineering Journal, 2019, 358: 467-479. |
30 | Jin H, Li Y S, Liu X L, et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks[J]. Chemical Engineering Science, 2015, 124: 170-178. |
31 | Swift T D, Bagia C, Nikolakis V, et al. Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments [J]. Aiche Journal, 2013, 59(9): 3378-3390. |
32 | Dornath P, Fan W. Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent[J]. Microporous and Mesoporous Materials, 2014, 191: 10-17. |
33 | Li M Y, Wang F, Zhang J. Zeolitic tetrazolate-imidazolate frameworks with SOD topology for room temperature fixation of CO2 to cyclic carbonates[J]. Crystal Growth & Design, 2020, 20(5): 2866-2870. |
34 | Yuan M, Liu Z Q, Lv T T, et al. Confinement effect and efficient adsorption of furfural onto ZIF-8-derived microporous carbon [J]. Journal of Chemical Technology and Biotechnology, 2023, 98(5): 1166-1174. |
35 | Gao M Z, Wang J, Rong Z H, et al. A combined experimental-computational investigation on water adsorption in various ZIFs with the SOD and RHO topologies[J]. RSC Advances, 2018, 8(69): 39627-39634. |
36 | Yuan M, Liu T C, Shi Q, et al. Understanding the KOH activation mechanism of zeolitic imidazolate framework-derived porous carbon and their corresponding furfural/acetic acid adsorption separation performance[J]. Chemical Engineering Journal, 2022, 428: 132016. |
37 | Yuan M, Gao M Z, Shi Q, et al. Understanding the characteristics of water adsorption in zeolitic imidazolate framework-derived porous carbon materials[J]. Chemical Engineering Journal, 2020, 379: 122412. |
[1] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[2] | 张子佳, 仇昕月, 孙翔, 罗志斌, 罗海中, 贺高红, 阮雪华. 聚酰亚胺膜材料分子结构设计强化CO2渗透性研究进展[J]. 化工学报, 2024, 75(4): 1137-1152. |
[3] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[4] | 李俊, 赵亮, 高金森, 徐春明. 不同馏分油分级分质加工中萃取技术研究进展[J]. 化工学报, 2024, 75(4): 1065-1080. |
[5] | 莫滨宇, 张雅馨, 刘国振, 刘公平, 金万勤. 面向一/二价离子分离的金属有机骨架膜研究进展[J]. 化工学报, 2024, 75(4): 1183-1197. |
[6] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[7] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[8] | 董霄, 白志山, 杨晓勇, 殷伟, 刘宁普, 于启凡. CHPPO工艺氧化液耦合除杂技术的研究与工业应用[J]. 化工学报, 2024, 75(4): 1630-1641. |
[9] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[10] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[11] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[12] | 邢雷, 关帅, 蒋明虎, 赵立新, 蔡萌, 刘海龙, 陈德海. 高气液比井下气液旋流分离器结构设计与性能分析[J]. 化工学报, 2024, 75(3): 900-913. |
[13] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[14] | 王宝凤, 王术高, 程芳琴. 固废基硫掺杂多孔炭材料制备及其对CO2吸附性能研究进展[J]. 化工学报, 2024, 75(2): 395-411. |
[15] | 陶明清, 慕明昊, 程滕, 王博. 喷雾耦合降温强化旋风分离器脱除细颗粒物的研究[J]. 化工学报, 2024, 75(2): 584-592. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 386
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||