化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2644-2655.DOI: 10.11949/0438-1157.20240026
姚宏哲1(
), 黄飞宇1, 杨松1, 钟梅1, 代正华1,2(
)
收稿日期:2024-01-05
修回日期:2024-03-05
出版日期:2024-07-25
发布日期:2024-08-09
通讯作者:
代正华
作者简介:姚宏哲(1998—),男,硕士研究生,1693982164@qq.com
基金资助:
Hongzhe YAO1(
), Feiyu HUANG1, Song YANG1, Mei ZHONG1, Zhenghua DAI1,2(
)
Received:2024-01-05
Revised:2024-03-05
Online:2024-07-25
Published:2024-08-09
Contact:
Zhenghua DAI
摘要:
重质油高温快速热解过程模型对提高产品收率、附加值及降低能耗具有重要意义。利用自动反应网络生成器RMG(reaction mechanism generator)构建重质油高温快速热解的机理模型。选择了分步构建方法,最终合并的模型包含230种物质和1468个反应。采用高频炉对二十烷、十氢萘、乙苯和不同质量比例混合物(二十烷、乙苯和十氢萘)进行快速热解实验验证,结果表明:机理模型可准确模拟出重质油高温快速热解主要气体产物生成结果,当重质油中链烷烃含量较多时和芳烃含量较多时,分别控制温度在1300℃左右和800℃左右有利于乙烯的生产。
中图分类号:
姚宏哲, 黄飞宇, 杨松, 钟梅, 代正华. 重质油高温快速热解自动反应网络的动力学建模[J]. 化工学报, 2024, 75(7): 2644-2655.
Hongzhe YAO, Feiyu HUANG, Song YANG, Mei ZHONG, Zhenghua DAI. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil[J]. CIESC Journal, 2024, 75(7): 2644-2655.
| 数据库 | 二十烷 | 十氢萘 | 乙苯 |
|---|---|---|---|
| 热力学库 | ‘primaryThermoLibrary’ | ‘DFT_QCI_thermo’ | ‘primaryThermoLibrary’ |
| 反应库 | — | — | ‘AromaticsPyrolysis’ |
| 动力学库 | ‘H_Abstraction’、‘R_Addition_MultipleBond’、‘R_Recombination’、‘Disproportionation’、‘Intra_R_Add_Exocyclic’、‘Intra_R_Add_Endocyclic’ | ||
表 1 模型化合物数据库的选择
Table 1 Selection of model compound database
| 数据库 | 二十烷 | 十氢萘 | 乙苯 |
|---|---|---|---|
| 热力学库 | ‘primaryThermoLibrary’ | ‘DFT_QCI_thermo’ | ‘primaryThermoLibrary’ |
| 反应库 | — | — | ‘AromaticsPyrolysis’ |
| 动力学库 | ‘H_Abstraction’、‘R_Addition_MultipleBond’、‘R_Recombination’、‘Disproportionation’、‘Intra_R_Add_Exocyclic’、‘Intra_R_Add_Endocyclic’ | ||
| 进料 | 进料速度/(ml/min) | 载气流量/(ml/min) | 温度/℃ | 进料时间/s |
|---|---|---|---|---|
| 二十烷 | 2 | 400 | 600~1000 | 600 |
| 十氢萘 | 2 | 400 | 600~1000 | 600 |
| 乙苯 | 2 | 400 | 600~1000 | 600 |
| 二十烷∶十氢萘∶乙苯(1∶1∶1) | 2 | 400 | 600~1000 | 600 |
| 二十烷∶十氢萘∶乙苯(1∶3∶6) | 2 | 400 | 600~1000 | 600 |
表 2 模型化合物高温快速热解的工况条件
Table 2 Operating conditions for rapid high-temperature pyrolysis of model compounds
| 进料 | 进料速度/(ml/min) | 载气流量/(ml/min) | 温度/℃ | 进料时间/s |
|---|---|---|---|---|
| 二十烷 | 2 | 400 | 600~1000 | 600 |
| 十氢萘 | 2 | 400 | 600~1000 | 600 |
| 乙苯 | 2 | 400 | 600~1000 | 600 |
| 二十烷∶十氢萘∶乙苯(1∶1∶1) | 2 | 400 | 600~1000 | 600 |
| 二十烷∶十氢萘∶乙苯(1∶3∶6) | 2 | 400 | 600~1000 | 600 |
| 项目 | 二十烷 | 十氢萘 | 乙苯 | ||
|---|---|---|---|---|---|
| 机制合并 | 物质 | 230 | 反应 | 1468 | |
| 用户指定容差 | 0.05 | 0.1 | 0.1 | ||
(DD∶HH∶MM∶SS) 执行时间 | 00∶00∶07∶31 | 00∶21∶51∶12 | 05∶05∶20∶56 | ||
| 核心物质 | 64 | 83 | 122 | ||
| 核心反应 | 477 | 545 | 477 | ||
| 边缘物质 | 839 | 7980 | 5900 | ||
| 边缘反应 | 5449 | 19063 | 9014 | ||
表 3 反应机理生成器模拟结果
Table 3 Simulation results of the mechanism of the reaction
| 项目 | 二十烷 | 十氢萘 | 乙苯 | ||
|---|---|---|---|---|---|
| 机制合并 | 物质 | 230 | 反应 | 1468 | |
| 用户指定容差 | 0.05 | 0.1 | 0.1 | ||
(DD∶HH∶MM∶SS) 执行时间 | 00∶00∶07∶31 | 00∶21∶51∶12 | 05∶05∶20∶56 | ||
| 核心物质 | 64 | 83 | 122 | ||
| 核心反应 | 477 | 545 | 477 | ||
| 边缘物质 | 839 | 7980 | 5900 | ||
| 边缘反应 | 5449 | 19063 | 9014 | ||
图 5 二十烷-十氢萘-乙苯不同质量比混合热解转化率及主要气体摩尔分数
Fig.5 Mixed pyrolysis conversion ratio and molar fraction of main gas of eicosane, decahydronaphthalene and ethylbenzene with different mass ratios
图 6 二十烷、十氢萘、乙苯以1∶3∶6比例混合热解生成主要气体的反应路径分析
Fig.6 Reaction pathway analysis of the main gas generated by the pyrolysis of a mixture of eicosane, decahydronaphthalene, and ethylbenzene in a ratio of 1∶3∶6
| 序号 | 主要基元反应 | 动力学参数 | ||
|---|---|---|---|---|
| 指前因子 | 温度指数 | 活化能/(kJ/mol) | ||
| 1 | H(2)+CH4(5) | 4.10×103 | 3.16 | 8.76 |
| 2 | H(2)+C3H6(213) | 1.36×108 | 1.64 | 1.86 |
| 3 | H(2)+C2H4(7) | 2.40×102 | 3.62 | 11.27 |
| 4 | H(2)+C10H18(120) | 9.52×10-1 | 4.34 | 2.00 |
| 5 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
| 6 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
| 7 | H(2)+C8H10(1) | 1.60×1013 | 0 | 8.17 |
| 8 | H(2)+C6H6(29) | 4.57×108 | 1.88 | 14.84 |
| 9 | H(2)+C10H16(124) | 2.55×102 | 3.68 | 4.70 |
| 10 | H(2)+C7H8(23) | 7.54×104 | 2.57 | 3.15 |
| 11 | H(2)+C7H8(22) | 8.94×10-1 | 4.34 | -0.40 |
| 12 | H(2)+C8H8(27) | 2.81×105 | 2.41 | 8.84 |
| 13 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
| 14 | CH3(4)+C7H7(9) | 6.75×1016 | -1.29 | 0 |
| 15 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
| 16 | C2H4(7)+C2H5(6) | 4.24×103 | 2.41 | 5.06 |
| 17 | H(2)+C2H3(8)(M) | 3.90×1013 | 0.20 | 0 |
| 18 | H(2)+C4H8(222) | 3.01×108 | 1.60 | 2.40 |
| 19 | H(2)+C2H4(7)(M) | 1.40×109 | 1.46 | 1.36 |
| 20 | C5H10(195) | 8.70×1011 | 0 | 55.69 |
| 21 | CH3(4)+C3H6(213) | 7.20×10-2 | 4.25 | 7.53 |
| 22 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
| 23 | CH3(4)+C2H4(7) | 6.00×107 | 1.56 | 16.63 |
| 24 | CH3(4)+C8H10(1) | 6.00×1012 | 0 | 12.62 |
| 25 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
| 26 | CH3(4)+C7H8(23) | 1.07×106 | 2.27 | 4.39 |
| 27 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
| 28 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
| 29 | CH3(4)+C6H6(29) | 5.15×103 | 2.90 | 15.31 |
| 30 | CH3(4)+C8H7(32) | 8.20×106 | 1.88 | -1.12 |
| 31 | CH3(4)+C8H8(27) | 9.80×10-2 | 4.01 | 12.90 |
| 32 | CH3(4)+C10H16(124) | 6.42×10-2 | 4.34 | 6.61 |
| 33 | CH3(4)+C10H18(120) | 2.26×10-2 | 4.34 | 7.69 |
| 34 | C7H7(9) | 9.78×109 | 0.58 | 28.56 |
| 35 | C4H6(133)+C6H10(132) | 1.71×104 | 1.53 | 23.41 |
| 36 | H(2)+C10H16(125) | 7.72×107 | 1.64 | 2.17 |
| 37 | H(2)+C8H8(27) | 6.00×107 | 1.64 | 1.55 |
| 38 | H(2)+allyl(224) | 5.84×1013 | 0.18 | 0.12 |
| 39 | H(2)+C3H6(213) | 3.36×103 | 3.14 | 4.29 |
| 40 | CH3(4)+C3H6(213) | 2.10×104 | 2.41 | 5.32 |
| 41 | C2H5(6)+allyl(224) | 1.37×1014 | -0.35 | -0.13 |
| 42 | H(2)+C3H6(213) | 1.84×109 | 1.55 | 1.57 |
| 43 | C3H6(213)+npropyl(172) | 2.13×103 | 2.41 | 4.75 |
| 44 | C7H8(22)+C8H7(31) | 2.90×10-2 | 4.34 | -5.60 |
| 45 | C2H4(7)+C8H12(130) | 2.64×1011 | 0 | 29.61 |
| 46 | C2H4(7)+C4H6(133) | 1.00×1010 | 0 | 20.00 |
| 47 | C2H3(8)+C8H8(27) | 3.91×10-3 | 4.50 | 3.67 |
| 48 | C2H3(8)+C8H10(1) | 5.56×10-3 | 4.34 | 0.20 |
| 49 | C2H4(7)+npropyl(172) | 4.24×103 | 2.41 | 5.06 |
| 50 | C2H4(7)+C8H7(31) | 2.20×10-2 | 4.40 | 4.75 |
| 51 | C2H4(7)+C8H7(33) | 2.20×10-2 | 4.40 | 4.75 |
| 52 | H(2)+CH3(4)(M) | 2.10×1014 | 0 | 0 |
| 53 | H(2)+C8H9(12) | 9.17×1013 | 0.12 | 0 |
| 54 | C8H9(12)+C8H11(16) | 8.43×1011 | 0 | 0 |
| 55 | CH3(4)+C8H11(16) | 3.38×1011 | -0.18 | -0.01 |
| 56 | H(2)+C8H10(1) | 8.76×107 | 1.71 | 6.09 |
| 57 | 2CH3(4) | 5.40×1013 | 0 | 16.06 |
| 58 | CH3(4)+C2H5(6) | 9.00×1011 | 0 | 0 |
| 59 | C2H5(6)+C8H9(12) | 6.90×1013 | -0.35 | 0 |
| 60 | 2H(2)+H2(3) | 1.00×1017 | -0.60 | 0 |
| 61 | 2H(2)(M) | 7.00×1017 | -1.00 | 0 |
| 62 | H(2)+C8H11(16) | 1.00×1010 | 0 | 0 |
| 63 | H(2)+C2H5(6) | 1.08×1013 | 0 | 0 |
| 64 | C2H3(8)+C8H11(16) | 8.43×1011 | 0 | 0 |
| 65 | C2H3(8)+C8H10(1) | 5.40×10-4 | 4.55 | 3.50 |
| 66 | C2H3(8)+C2H5(6) | 4.56×1014 | -0.70 | 0 |
| 67 | H(2)+C10H17(122) | 1.95×1012 | 0.35 | 0 |
| 68 | H(2)+C10H17(123) | 1.58×1013 | -0.22 | 0 |
| 69 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
| 70 | C10H17(122) | 2.84×107 | 1.625 | 35.45 |
| 71 | C10H17(122) | 2.28×10-3 | 3.95 | 11.17 |
| 72 | C10H17(122) | 5.64×10-2 | 3.28 | 5.91 |
| 73 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
| 74 | C10H17(122)+C10H18(120) | 1.03×10-2 | 4.29 | 7.71 |
| 75 | C2H5(6)+C10H17(123) | 6.33×1014 | -0.70 | 0 |
| 76 | npropyl(172)+C17H35(171) | 3.19×1016 | -1.18 | 0 |
| 77 | CH3(4)+C2H4(7) | 4.18×104 | 2.41 | 5.63 |
| 78 | CH3(4)+npropyl(172) | 2.30×1013 | -0.32 | 0 |
| 79 | H(2)+npropyl(172) | 3.62×1012 | 0 | 0 |
| 80 | allyl(224)+npropyl(172) | 5.80×1012 | 0 | -0.13 |
表 4 主要基元反应动力学参数
Table 4 Translation of the main elementary reaction kinetic parameters
| 序号 | 主要基元反应 | 动力学参数 | ||
|---|---|---|---|---|
| 指前因子 | 温度指数 | 活化能/(kJ/mol) | ||
| 1 | H(2)+CH4(5) | 4.10×103 | 3.16 | 8.76 |
| 2 | H(2)+C3H6(213) | 1.36×108 | 1.64 | 1.86 |
| 3 | H(2)+C2H4(7) | 2.40×102 | 3.62 | 11.27 |
| 4 | H(2)+C10H18(120) | 9.52×10-1 | 4.34 | 2.00 |
| 5 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
| 6 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
| 7 | H(2)+C8H10(1) | 1.60×1013 | 0 | 8.17 |
| 8 | H(2)+C6H6(29) | 4.57×108 | 1.88 | 14.84 |
| 9 | H(2)+C10H16(124) | 2.55×102 | 3.68 | 4.70 |
| 10 | H(2)+C7H8(23) | 7.54×104 | 2.57 | 3.15 |
| 11 | H(2)+C7H8(22) | 8.94×10-1 | 4.34 | -0.40 |
| 12 | H(2)+C8H8(27) | 2.81×105 | 2.41 | 8.84 |
| 13 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
| 14 | CH3(4)+C7H7(9) | 6.75×1016 | -1.29 | 0 |
| 15 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
| 16 | C2H4(7)+C2H5(6) | 4.24×103 | 2.41 | 5.06 |
| 17 | H(2)+C2H3(8)(M) | 3.90×1013 | 0.20 | 0 |
| 18 | H(2)+C4H8(222) | 3.01×108 | 1.60 | 2.40 |
| 19 | H(2)+C2H4(7)(M) | 1.40×109 | 1.46 | 1.36 |
| 20 | C5H10(195) | 8.70×1011 | 0 | 55.69 |
| 21 | CH3(4)+C3H6(213) | 7.20×10-2 | 4.25 | 7.53 |
| 22 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
| 23 | CH3(4)+C2H4(7) | 6.00×107 | 1.56 | 16.63 |
| 24 | CH3(4)+C8H10(1) | 6.00×1012 | 0 | 12.62 |
| 25 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
| 26 | CH3(4)+C7H8(23) | 1.07×106 | 2.27 | 4.39 |
| 27 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
| 28 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
| 29 | CH3(4)+C6H6(29) | 5.15×103 | 2.90 | 15.31 |
| 30 | CH3(4)+C8H7(32) | 8.20×106 | 1.88 | -1.12 |
| 31 | CH3(4)+C8H8(27) | 9.80×10-2 | 4.01 | 12.90 |
| 32 | CH3(4)+C10H16(124) | 6.42×10-2 | 4.34 | 6.61 |
| 33 | CH3(4)+C10H18(120) | 2.26×10-2 | 4.34 | 7.69 |
| 34 | C7H7(9) | 9.78×109 | 0.58 | 28.56 |
| 35 | C4H6(133)+C6H10(132) | 1.71×104 | 1.53 | 23.41 |
| 36 | H(2)+C10H16(125) | 7.72×107 | 1.64 | 2.17 |
| 37 | H(2)+C8H8(27) | 6.00×107 | 1.64 | 1.55 |
| 38 | H(2)+allyl(224) | 5.84×1013 | 0.18 | 0.12 |
| 39 | H(2)+C3H6(213) | 3.36×103 | 3.14 | 4.29 |
| 40 | CH3(4)+C3H6(213) | 2.10×104 | 2.41 | 5.32 |
| 41 | C2H5(6)+allyl(224) | 1.37×1014 | -0.35 | -0.13 |
| 42 | H(2)+C3H6(213) | 1.84×109 | 1.55 | 1.57 |
| 43 | C3H6(213)+npropyl(172) | 2.13×103 | 2.41 | 4.75 |
| 44 | C7H8(22)+C8H7(31) | 2.90×10-2 | 4.34 | -5.60 |
| 45 | C2H4(7)+C8H12(130) | 2.64×1011 | 0 | 29.61 |
| 46 | C2H4(7)+C4H6(133) | 1.00×1010 | 0 | 20.00 |
| 47 | C2H3(8)+C8H8(27) | 3.91×10-3 | 4.50 | 3.67 |
| 48 | C2H3(8)+C8H10(1) | 5.56×10-3 | 4.34 | 0.20 |
| 49 | C2H4(7)+npropyl(172) | 4.24×103 | 2.41 | 5.06 |
| 50 | C2H4(7)+C8H7(31) | 2.20×10-2 | 4.40 | 4.75 |
| 51 | C2H4(7)+C8H7(33) | 2.20×10-2 | 4.40 | 4.75 |
| 52 | H(2)+CH3(4)(M) | 2.10×1014 | 0 | 0 |
| 53 | H(2)+C8H9(12) | 9.17×1013 | 0.12 | 0 |
| 54 | C8H9(12)+C8H11(16) | 8.43×1011 | 0 | 0 |
| 55 | CH3(4)+C8H11(16) | 3.38×1011 | -0.18 | -0.01 |
| 56 | H(2)+C8H10(1) | 8.76×107 | 1.71 | 6.09 |
| 57 | 2CH3(4) | 5.40×1013 | 0 | 16.06 |
| 58 | CH3(4)+C2H5(6) | 9.00×1011 | 0 | 0 |
| 59 | C2H5(6)+C8H9(12) | 6.90×1013 | -0.35 | 0 |
| 60 | 2H(2)+H2(3) | 1.00×1017 | -0.60 | 0 |
| 61 | 2H(2)(M) | 7.00×1017 | -1.00 | 0 |
| 62 | H(2)+C8H11(16) | 1.00×1010 | 0 | 0 |
| 63 | H(2)+C2H5(6) | 1.08×1013 | 0 | 0 |
| 64 | C2H3(8)+C8H11(16) | 8.43×1011 | 0 | 0 |
| 65 | C2H3(8)+C8H10(1) | 5.40×10-4 | 4.55 | 3.50 |
| 66 | C2H3(8)+C2H5(6) | 4.56×1014 | -0.70 | 0 |
| 67 | H(2)+C10H17(122) | 1.95×1012 | 0.35 | 0 |
| 68 | H(2)+C10H17(123) | 1.58×1013 | -0.22 | 0 |
| 69 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
| 70 | C10H17(122) | 2.84×107 | 1.625 | 35.45 |
| 71 | C10H17(122) | 2.28×10-3 | 3.95 | 11.17 |
| 72 | C10H17(122) | 5.64×10-2 | 3.28 | 5.91 |
| 73 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
| 74 | C10H17(122)+C10H18(120) | 1.03×10-2 | 4.29 | 7.71 |
| 75 | C2H5(6)+C10H17(123) | 6.33×1014 | -0.70 | 0 |
| 76 | npropyl(172)+C17H35(171) | 3.19×1016 | -1.18 | 0 |
| 77 | CH3(4)+C2H4(7) | 4.18×104 | 2.41 | 5.63 |
| 78 | CH3(4)+npropyl(172) | 2.30×1013 | -0.32 | 0 |
| 79 | H(2)+npropyl(172) | 3.62×1012 | 0 | 0 |
| 80 | allyl(224)+npropyl(172) | 5.80×1012 | 0 | -0.13 |
| 1 | BP世界能源统计年鉴2022[M].北京: 中国统计出版社, 2022. |
| BP World Energy Statistical Yearbook 2022[M]. Beijing: China Statistics Press, 2022. | |
| 2 | Ore O T, Adebiyi F M. A review on current trends and prospects in the pyrolysis of heavy oils[J]. Journal of Petroleum Exploration and Production, 2021, 11(3): 1521-1530. |
| 3 | Hadavimoghaddam F, Rozhenko A, Mohammadi M-R, et al. Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques[J]. Scientific Reports, 2023, 13(1): 22649. |
| 4 | Khelkhal M A, Lapuk S E, Buzyurov A V, et al. Thermal behavior of heavy oil catalytic pyrolysis and aquathermolysis[J]. Catalysts, 2022, 12(4): 449. |
| 5 | 顾承瑜. 高苛刻度延迟焦化装置掺炼催化裂化油浆的工业实践[J]. 石油炼制与化工, 2022, 53(7): 40-44. |
| Gu C Y. Industrial practice of mixing FCC slurry on delayed coking unit with high severity[J]. Petroleum Processing and Petrochemicals, 2022, 53(7): 40-44. | |
| 6 | Liao G, Shi K, Ye C, et al. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 105997. |
| 7 | Xiong Q A, Zhang Y M, Huang Y J, et al. Fundamental study of the integrated process of heavy oil pyrolysis and coke gasification (Part Ⅰ): Effect of CO and H2 in syngas atmosphere on heavy oil pyrolysis[J]. Fuel, 2022, 324: 124650. |
| 8 | Nezhad M M, Hami M R. Thermogravimetric analysis and kinetic study of heavy oil pyrolysis[J]. Petroleum Science and Technology, 2016, 34(10): 911-914. |
| 9 | Shin S, Im S I, Kwon E H, et al. Kinetic study on the nonisothermal pyrolysis of oil sand bitumen and its maltene and asphaltene fractions[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 658-665. |
| 10 | Huang Y, Gao Y X, Zhou H, et al. Pyrolysis of palm kernel shell with internal recycling of heavy oil[J]. Bioresource Technology, 2019, 272: 77-82. |
| 11 | Gautam R, Alabbad M, Guevara E R, et al. On the products from the pyrolysis of heavy fuel and vacuum residue oil[J]. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106060. |
| 12 | 李子为. 劣质重油快速热解特性及动力学研究[D]. 北京: 中国石油大学(北京), 2022. |
| Li Z W. Study on fast pyrolysis characteristics and kinetics of inferior heavy oil[D]. Beijing: China University of Petroleum, 2022. | |
| 13 | Fu J, Wang N, Zhao J, et al. A membrane computing optimization algorithm with multi-subsystems for parameter estimation of heavy oil thermal cracking model[J]. International Journal of Intelligent Robotics and Applications, 2022, 6(1): 139-151. |
| 14 | Zhu Q, Zhao D, Zhang S, et al. U-model enhanced dynamic control of a heavy oil pyrolysis/cracking furnace[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 577-586. |
| 15 | Tan X C, Liu Q K, Zhu D Q, et al. Pyrolysis of heavy oil in the presence of supercritical water: the reaction kinetics in different phases[J]. AIChE Journal, 2015, 61(3): 857-866. |
| 16 | Yan L, Zhang X P, Zhang S J. The study of molecular modeling for heavy oil thermal cracking[J]. Chemical Engineering & Technology, 2007, 30(9): 1166-1175. |
| 17 | Jiang D, Yuan C, Cheng X, et al. Study on the pyrolysis mechanism of unsaturated fatty acid: a combined density functional theory and experimental study[J]. International Journal of Energy Research, 2022, 46(2): 2029-2040. |
| 18 | 韩乔昆, 范启明, 申海平. 芳烃模型化合物的热转化机理研究进展[J]. 化工进展, 2017, 36(S1): 133-141. |
| Han Q K, Fan Q M, Shen H P. Research progress on thermal conversion mechanism of aromatic model compounds[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 133-141. | |
| 19 | Zhang H Y, Yang C J, Tao Y J, et al. Catalytic cracking of model compounds of bio-oil: characteristics and mechanism research on guaiacol and acetic acid[J]. Fuel Processing Technology, 2022, 238: 107512. |
| 20 | Oliveira L P, Hudebine D, Guillaume D, et al. A review of kinetic modeling methodologies for complex processes[J]. Oil & Gas Science and Technology-Revue D’IFP Energies Nouvelles, 2016, 71: 45. |
| 21 | Zhang P, Yee N W, Filip S V, et al. Modeling study of the anti-knock tendency of substituted phenols as additives: an application of the reaction mechanism generator (RMG)[J]. Physical Chemistry Chemical Physics, 2018, 20(16): 10637-10649. |
| 22 | Vernuccio S, Broadbelt L J. Discerning complex reaction networks using automated generators[J]. AIChE Journal, 2019, 65(8): e16663. |
| 23 | Gao C W, Allen J W, Green W H, et al. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms[J]. Computer Physics Communications, 2016, 203: 212-225. |
| 24 | van Geem K M, Reyniers M-F, Marin G B, et al. Automatic reaction network generation using RMG for steam cracking of n-hexane[J]. AIChE Journal, 2006, 52(2): 718-730. |
| 25 | Petway S V, Ismail H, Green W H, et al. Measurements and automated mechanism generation modeling of OH production in photolytically initiated oxidation of the neopentyl radical[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3891-3900. |
| 26 | Harper M R, van Geem K M, Pyl S P, et al. Comprehensive reaction mechanism for n-butanol pyrolysis and combustion[J]. Combustion and Flame, 2011, 158(1): 16-41. |
| 27 | Merchant S S, Zanoelo E F, Speth R L, et al. Combustion and pyrolysis of iso-butanol: experimental and chemical kinetic modeling study[J]. Combustion and Flame, 2013, 160(10): 1907-1929. |
| 28 | Allen J W, Scheer A M, Gao C W, et al. A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi[J]. Combustion and Flame, 2014, 161(3): 711-724. |
| 29 | 任玉. 分子级石脑油蒸汽裂解反应过程模拟与工艺优化[D]. 杭州: 浙江大学, 2022. |
| Ren Y. Simulation and optimization of molecular-level naphtha steam cracking reaction process[D]. Hangzhou: Zhejiang University, 2021. | |
| 30 | 李颖丽, 甯红波, 朱权, 等. 乙苯裂解机理和超临界压力下的动力学模拟[J]. 高等学校化学学报, 2014, 35(3): 576-581. |
| Li Y L, Ning H B, Zhu Q, et al. Kinetics simulation of ethylbenzene pyrolysis under supercritical pressure[J]. Chemical Journal of Chinese Universities, 2014, 35(3): 576-581. |
| [1] | 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104. |
| [2] | 关冬, 张霖宙, 赵锁奇, 徐春明. 重质油稳定性的耗散粒子动力学模拟[J]. 化工学报, 2022, 73(10): 4613-4624. |
| [3] | 陈振涛, 徐春明. 重质油在孔道内扩散传质的研究进展[J]. 化工学报, 2016, 67(1): 165-175. |
| [4] | 宁国庆,王 刚,高金森. 石油重质组分制备碳功能材料的研究进展 [J]. CIESC Journal, 2011, 30(9): 1998-. |
| [5] | 徐春明, 赵锁奇, 卢春喜, 孙学文, 许志明, 鄂承林. 重质油梯级分离新工艺的工程基础研究 [J]. 化工学报, 2010, 61(9): 2393-2400. |
| [6] | 欧阳朝斌;郭占成;万年青;乔 琦. 煤与重质油共气化热态模拟实验 [J]. CIESC Journal, 2007, 26(11): 1631-. |
| [7] | 欧阳朝斌;郭占成;万年青;乔 琦. 煤与重质油共气化可行性研究 [J]. CIESC Journal, 2007, 26(10): 1439-. |
| [8] | 周永昌, 赵锁奇, 许志明, 梁咏梅. 预测复杂高沸点重质油馏分平均沸点的基团贡献法 [J]. 化工学报, 2004, 55(8): 1224-1229. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号