化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2656-2669.DOI: 10.11949/0438-1157.20240267

• 能源和环境工程 • 上一篇    下一篇

钢渣、电石渣增强硫化砷渣稳定化/固化机制

张亚斌1,2(), 苏杨1,2, 张慧荣1,2, 宋一朋3, 李健4, 郭彦霞1,2()   

  1. 1.山西大学环境与资源学院国家环境保护煤炭废弃物资源化高效利用技术重点实验室,山西 太原 030006
    2.山西省黄河实验室,山西 太原 030006
    3.山西省太原固体废物处置中心(有限公司),山西 太原 030000
    4.山西大地生态环境技术研究院有限公司,山西 太原 030012
  • 收稿日期:2024-03-05 修回日期:2024-04-27 出版日期:2024-07-25 发布日期:2024-08-09
  • 通讯作者: 郭彦霞
  • 作者简介:张亚斌(1984—),男,博士,副教授,zhangyabin@sxu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFC2902604);山西省黄河实验室科技攻关计划项目(YRL-202106);山西省基础研究计划项目(20210302123457)

Mechanism of enhanced arsenic sulfide stabilization/solidification by using steel slag and carbide slag

Yabin ZHANG1,2(), Yang SU1,2, Huirong ZHANG1,2, Yipeng SONG3, Jian LI4, Yanxia GUO1,2()   

  1. 1.State Environmental Protection Key Laboratory of Efficient Resource Utilization Techniques of Coal Waste, School of Environment and Resources, Shanxi University, Taiyuan 030006, Shanxi, China
    2.Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi, China
    3.Shanxi Taiyuan Solid Waste Disposal Centre (Co. , Ltd. ), Taiyuan 030000, Shanxi, China
    4.Dadi Ecological Environment Technology Research Institute Co. , Ltd. , Taiyuan 030012, Shanxi, China
  • Received:2024-03-05 Revised:2024-04-27 Online:2024-07-25 Published:2024-08-09
  • Contact: Yanxia GUO

摘要:

随着金属冶炼等工业的发展,难以处理的硫化砷渣大量堆存,对资源环境和人体健康造成严重危害。稳定化/固化技术是一种应用前景广阔的高效固砷技术,但是药剂消耗大、成本高、对复杂高浓度砷渣处理效果差等问题一直限制着该技术的发展。以低成本、高活性的钢渣和电石渣代替化学稳定剂,利用酸改性钢渣、铁离子和H2O2形成高级氧化/稳定化体系,随后在水泥作用下固化。通过XRD、FTIR、XPS等对上述过程进行表征,结果显示低价态砷、硫和有机物质被高效氧化成稳定的高价态钙铁盐,最终形成的固化体结构较为稳定。工艺优化后,1.0 g硫化砷渣在0.2 g钢渣、0.5 g H2O2、0.3 g电石渣和1.0 g水泥的分步协同稳定化/固化处理后,固化体抗压强度为5.7 MPa,砷浸出浓度仅为0.66 mg·L-1,远低于1.2 mg·L-1的安全填埋标准。

关键词: 硫化砷渣, 钢渣, 高级氧化, 稳定化, 固化

Abstract:

With the development of metal smelting and other industries, a large amount of arsenic sulfide slag that is difficult to handle is accumulated, causing serious harm to resources, the environment and human health. The stabilization/solidification technology represents a highly efficient method for fixing arsenic with promising applications. However, the high reagent consumption and cost, along with limited efficacy in treating complex and highly concentrated arsenic slag, have hindered the progress of this technology. In this study, low-cost and highly active steel slag and carbide slag were employed instead of chemical stabilizers to create an advanced oxidation/stabilization system through acid-activated steel slag, iron ions, and H2O2, then it was solidified with cement. The aforementioned processes were characterized by using XRD, FTIR, XPS techniques and so on. It is demonstrated that the low-valence arsenic compounds, sulfur compounds, and organic substances are effectively oxidized to form stable high-valence calcium iron salts while maintaining structural stability after solidification. Following process optimization steps involving 0.2 g steel slag, 0.5 g H2O2, 0.3 g carbide slag, and 1.0 g cement for stepwise synergistic stabilization/solidification treatment of 1.0 g arsenic sulfide slag, the compressive strength of the solidified body is 5.7 MPa, and the arsenic leaching concentration is only 0.66 mg·L-1,which is far lower than the safe landfill standard of 1.2 mg·L-1.

Key words: arsenic sulfide slag, steel slag, advanced oxidation, stabilization, solidification

中图分类号: