化工学报 ›› 2025, Vol. 76 ›› Issue (3): 985-994.DOI: 10.11949/0438-1157.20240907
收稿日期:2024-08-12
修回日期:2024-10-01
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
文键
作者简介:李科(1992—),男,博士,助理教授,vincent_lee@xjtu.edu.cn
基金资助:
Ke LI(
), Biping XIN, Jian WEN(
)
Received:2024-08-12
Revised:2024-10-01
Online:2025-03-25
Published:2025-03-28
Contact:
Jian WEN
摘要:
为进一步优化应用于液氢存储的多层绝热结构的绝热性能,提出采用序列二次规划算法对耦合蒸气冷却屏(VCS)的连续变密度多层绝热辐射屏间距进行优化。研究了蒸气冷却屏位置、蒸气冷却屏内仲正转化以及蒸气冷却屏数量对最优辐射屏间距分布以及绝热性能的影响。结果表明:蒸气冷却屏的引入使多层绝热最优辐射屏间距分布在蒸气冷却屏设置处出现突变,优化后漏热热通量qin相比于优化前下降幅度最大可达到36.1%;引入仲正转化的条件下优化可使qin的下降幅度最大达到28.3%;VCS数量的增加使最内层辐射屏间距显著减小,当蒸气冷却屏数量增加到2时,最小qin相比于单蒸气冷却屏下降50.4%。
中图分类号:
李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994.
Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank[J]. CIESC Journal, 2025, 76(3): 985-994.
| 区域 | 取值 |
|---|---|
| 低密度区 | 每厘米设置8层辐射屏,共1.25 cm |
| 中密度区 | 每厘米设置12层辐射屏,共1.25 cm |
| 高密度区 | 每厘米设置16层辐射屏,共1.25 cm |
| 填充物总层数 | 45 |
表1 多层绝热结构的屏间距参数[8]
Table 1 Screen spacing parameters of multi-layer insulation structure[8]
| 区域 | 取值 |
|---|---|
| 低密度区 | 每厘米设置8层辐射屏,共1.25 cm |
| 中密度区 | 每厘米设置12层辐射屏,共1.25 cm |
| 高密度区 | 每厘米设置16层辐射屏,共1.25 cm |
| 填充物总层数 | 45 |
| 1 | 周淑慧, 王军, 梁严. 碳中和背景下中国"十四五"天然气行业发展[J]. 天然气工业, 2021, 41(2): 171-182. |
| Zhou S H, Wang J, Liang Y. Development of China's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality[J]. Natural Gas Industry, 2021, 41(2): 171-182. | |
| 2 | Ratnakar R R, Gupta N, Zhang K, et al. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24149-24168. |
| 3 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
| Zou C N, Li J M, Zhang X, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
| 4 | Ratnakar R R, Dindoruk B, Harvey A. Thermodynamic modeling of hydrogen-water system for high-pressure storage and mobility applications[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103463. |
| 5 | Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
| 6 | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
| Chen X L, Liu X M, Wang J, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814. | |
| 7 | 丁镠, 唐涛, 王耀萱, 等. 氢储运技术研究进展与发展趋势[J]. 天然气化工—C1化学与化工, 2022, 47(2): 35-40. |
| Ding L, Tang T, Wang Y X, et al. Research progress and development trend of hydrogen storage and transportation technology[J]. Natural Gas Chemical Industry, 2022, 47(2): 35-40. | |
| 8 | Martin J J, Hastings L. Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R]. Alabama: NASA Marshall Space Flight Center, 2001. |
| 9 | Funke T, Haberstroh C. A calorimeter for measurements of multilayer insulation at variable cold temperature[J]. Physics Procedia, 2015, 67: 1062-1067. |
| 10 | 徐夏凡, 陈六彪, 郑建朋, 等. 航天器变密度多层绝热变工况漏热特性研究[J]. 真空与低温, 2020, 26(4): 295-300. |
| Xu X F, Chen L B, Zheng J P, et al. Study on the heat leakage characteristics of spacecraft variable density multilayer under variable operating conditions[J]. Vacuum and Cryogenics, 2020, 26(4): 295-300. | |
| 11 | Scott R B. Thermal design of large storage vessels for liquid hydrogen and helium[J]. Journal of Research of the National Bureau of Standards, 1957, 58(6): 317. |
| 12 | Cunnington G. Thermodynamic optimization of a cryogenic storage system for minimum boiloff[C]//20th Aerospace Sciences Meeting. AIAA, 1982: 75. |
| 13 | Babac G, Sisman A, Cimen T. Two-dimensional thermal analysis of liquid hydrogen tank insulation[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6357-6363. |
| 14 | Sun Z R, Li M J, Qu Z G, et al. A quasi-2D thermodynamic model for performance analysis and optimization of liquid hydrogen storage system with multilayer insulation and vapor-cooled shield[J]. Journal of Energy Storage, 2023, 73: 109128. |
| 15 | Jiang W B, Zuo Z Q, Huang Y H, et al. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank[J]. Cryogenics, 2018, 96: 90-98. |
| 16 | Lv H Y, Zhang Z X, Chen L, et al. Thermodynamic analysis of vapor-cooled shield with para-to-ortho hydrogen conversion in composite multilayer insulation structure for liquid hydrogen tank[J]. International Journal of Hydrogen Energy, 2024, 50: 1448-1462. |
| 17 | Meng C J, Qin X J, Jiang W B, et al. Cooling effect analysis on para-ortho hydrogen conversion coupled in vapor-cooled shield[J]. International Journal of Hydrogen Energy, 2023, 48(41): 15600-15611. |
| 18 | Hastings L J, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage[R]. Alabama: NASA Marshall Space Flight Center, 2004. |
| 19 | Hedayat A. Analytical modeling of variable density multilayer insulation for cryogenic storage[C]//AIP Conference Proceedings. Madison, Wisconsin, USA: American Institute of Physics, 2002. |
| 20 | Johnson W, Fesmire J. Thermal performance of low layer density multilayer insulation using liquid nitrogen[C]//AIP Conference Proceedings. Spokane, Washington, USA: American Institute of Physics, 2012. |
| 21 | Zheng J P, Chen L B, Cui C, et al. Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation[J]. Applied Thermal Engineering, 2018, 130: 161-168. |
| 22 | 许张良, 谭宏博, 吴昊. 变密度多层低温绝热结构的性能比较与分析[J]. 工程热物理学报, 2023, 44(5): 1357-1365. |
| Xu Z L, Tan H B, Wu H. Comparative study on the thermal insulation performance of different variable density multi-layer insulation structures[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1357-1365. | |
| 23 | 朱浩唯, 黄永华, 许奕辉, 等. 变密度多层绝热的理论分析[J]. 低温工程, 2011(6): 42-46. |
| Zhu H W, Huang Y H, Xu Y H, et al. Performance optimization and analysis of variable density multilayer insulation[J]. Cryogenics, 2011(6): 42-46. | |
| 24 | 冶文莲, 王田刚, 王小军, 等. 应用于低温贮箱的变密度多层绝热传热分析[J]. 低温与超导, 2012, 40(12): 5-8. |
| Ye W L, Wang T G, Wang X J, et al. Heat transfer analysis of variable density multi-layer insulation for cryogenic storage tank[J]. Cryogenics & Superconductivity, 2012, 40(12): 5-8. | |
| 25 | Wang B, Huang Y H, Li P, et al. Optimization of variable density multilayer insulation for cryogenic application and experimental validation[J]. Cryogenics, 2016, 80: 154-163. |
| 26 | Wu S X, Li J J, Ding P Z, et al. Calculation and analysis of optimal layer density for variable density multilayer insulation based on layer by layer model and Lockheed equation[J]. Cryogenics, 2023, 132: 103699. |
| 27 | Li K C, Chen J, Tian X Q, et al. Study on the performance of variable density multilayer insulation in liquid hydrogen temperature region[J]. Energies, 2022, 15(24): 9267. |
| 28 | 余建榕, 张强, 康慧芳, 等. 低温推进剂贮箱气冷屏复合绝热结构综合优化设计[J]. 真空与低温, 2021, 27(2): 165-170. |
| Yu J R, Zhang Q, Kang H F, et al. Comprehensive optimization design of VCS composite thermal insulation structure for cryogenic propellant tank[J]. Vacuum and Cryogenics, 2021, 27(2): 165-170. | |
| 29 | 肖志宏, 汪荣顺, 石玉美, 等. 应用逐层传热模型分析高真空多层绝热中的传热过程[J]. 真空科学与技术学报, 2004, 24(2): 36-40. |
| Xiao Z H, Wang R S, Shi Y M, et al. Theoretical analysis of heat transfer of high vacuum multi-layers[J]. Chinese Journal of Vacuum Science and Technology, 2004, 24(2): 36-40. | |
| 30 | 陈国邦, 张鹏. 低温绝热与传热技术[M]. 北京: 科学出版社, 2004: 29-34. |
| Chen G B, Zhang P. Low Temperature Insulation and Heat Transfer Technology[M]. Beijing: Science Press, 2004: 29-34. | |
| 31 | Peng J K, Ahluwalia R K. Enhanced dormancy due to para-to-ortho hydrogen conversion in insulated cryogenic pressure vessels for automotive applications[J]. International Journal of Hydrogen Energy, 2013, 38(31): 13664-13672. |
| 32 | Li K, Li C L, Wen J, et al. Study on multi-stream plate fin heat exchanger coupled with ortho-para hydrogen conversion based on distributed parameter model[J]. International Journal of Hydrogen Energy, 2023, 48(85): 33315-33334. |
| 33 | Boggs P T, Tolle J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4: 1-51. |
| 34 | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001: 270-273. |
| Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001: 270-273. |
| [1] | 李新颖, 苏畅, 郭超, 庞建, 王超, 李春. CRISPR技术在链霉菌细胞工厂中的应用和优化[J]. 化工学报, 2025, 76(3): 922-932. |
| [2] | 张静, 元跃, 刘艳梅, 王智文, 陈涛. 生物法制备衣康酸研究进展[J]. 化工学报, 2025, 76(3): 909-921. |
| [3] | 万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075. |
| [4] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [5] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [6] | 杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110. |
| [7] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [8] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [9] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [10] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [11] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| [12] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [13] | 禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049. |
| [14] | 高波, 王佳琪, 刘志亮, 赵玄烈, 葛坤. 海上风电制氢系统建模及热力学与经济学分析[J]. 化工学报, 2025, 76(3): 1207-1220. |
| [15] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号