化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1064-1075.DOI: 10.11949/0438-1157.20240968
万俊(
), 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳(
)
收稿日期:2024-08-28
修回日期:2024-09-30
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
刘琳
作者简介:万俊(1990—),男,博士,副教授,wanjun@yau.edu.cn
基金资助:
Jun WAN(
), Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU(
)
Received:2024-08-28
Revised:2024-09-30
Online:2025-03-25
Published:2025-03-28
Contact:
Lin LIU
摘要:
安全储氢和高效制氢是实现氢能大规模应用的关键。利用甲醇作为储氢介质,并通过光能驱动甲醇-水重整制氢以实现温和连续现场制氢是促进氢能利用的一种有效途径。然而,缓慢的空穴转移和甲醇脱氢氧化速率成为限制光催化甲醇-水溶液制氢性能的瓶颈。基于催化剂纳米结构调控,通过构筑长径纳米棒Zn0.5Cd0.5S(ZCS-LNR)加快光生载流子分离和迁移速率,并通过引入NaOH碱性介质,利用OH-的快速活化和·OH的高效脱氢能力,以OH-/·OH氧化还原对加快催化剂表面空穴转移和甲醇氧化脱氢速率,实现了高性能的碱性甲醇-水溶液制氢过程。其中ZCS-LNR催化剂在室温、1.0 W/cm2光强、4 mol/L NaOH以及CH3OH∶H2O体积比为1∶1的条件下可获得54.33 mmol/(g·h)的产氢速率。为实现光催化甲醇-水溶液制氢过程提供了一种高效可行的新路径。
中图分类号:
万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075.
Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution[J]. CIESC Journal, 2025, 76(3): 1064-1075.
图1 萘乙烯加氢反应和质谱测试中萘乙烷裂解机理
Fig.1 The hydrogenation reduction of vinylnaphthalene with D2O as the reaction solvent, and the cleavage mechanism of products for mass spectrometry
图4 ZCS-LNR、ZCS-SNR和ZCS-NP的XPS全谱,Zn 2p、Cd 3d和S 2p的高分辨XPS谱图
Fig.4 XPS survey spectra of ZCS-LNR, ZCS-SNR and ZCS-NP, high-resolution XPS spectra of Zn 2p, Cd 3d and S 2p
| 样品 | Zn含量/% (原子分数) | Cd含量/% (原子分数) | Zn/Cd |
|---|---|---|---|
| ZCS-LNR | 21.83 | 20.55 | 1.06 |
| ZCS-SNR | 23.97 | 21.95 | 1.09 |
| ZCS-NP | 21.10 | 23.16 | 0.91 |
表1 不同催化剂的XPS含量分析
Table 1 Analysis of the XPS content of the different catalysts
| 样品 | Zn含量/% (原子分数) | Cd含量/% (原子分数) | Zn/Cd |
|---|---|---|---|
| ZCS-LNR | 21.83 | 20.55 | 1.06 |
| ZCS-SNR | 23.97 | 21.95 | 1.09 |
| ZCS-NP | 21.10 | 23.16 | 0.91 |
图7 不同形貌Zn0.5Cd0.5S的碱性甲醇水溶液产氢性能,ZCS-LNR在不同反应溶剂体系中的产氢活性对比
Fig.7 Photocatalytic H2 production of Zn0.5Cd0.5S with different structures in CH3OH-NaOH-H2O system, comparison of H2 production in different reaction systems using ZCS-LNR catalyst
图9 ZCS-LNR在不同溶液中的原位EPR光谱,同位素标记实验的气相色谱-质谱(GC-MS)分析(1 G=10-4 T)
Fig.9 In-situ EPR spectra of ZCS-LNR in different solution systems, gas chromatography-mass spectrometry (GC-MS) analysis for deuterium-labeled experiment
| 质荷比(m/z) | 相对丰度/% | rH/D |
|---|---|---|
| 141 | 100 | 2.4 |
| 142 | 41.5 | |
| 156 | 33.7 | 2.4 |
| 157 | 21.9 | |
| 158 | 7.7 |
表2 萘乙烷分子离子峰和裂解碎片峰的相对丰度和rH/D
Table 2 Relative abundance and rH/D of molecular ion peak and fragmentation peak of naphthalene ethane
| 质荷比(m/z) | 相对丰度/% | rH/D |
|---|---|---|
| 141 | 100 | 2.4 |
| 142 | 41.5 | |
| 156 | 33.7 | 2.4 |
| 157 | 21.9 | |
| 158 | 7.7 |
图10 ZCS-NP纳米颗粒和ZCS-LNR纳米棒催化剂的光生载流子迁移机理,ZCS-LNR在CH3OH-H2O和CH3OH-NaOH-H2O体系中的光催化反应机理
Fig.10 Schematic diagram of the photogenerated charge carrier transfer mechanism for ZCS-NP nanoparticles and ZCS-LNR nanorod catalysts, schematic illustration of the photocatalytic reaction mechanism for ZCS-LNR in CH3OH-H2O and CH3OH-NaOH-H2O systems
| 1 | Yang M, Hunger R, Berrettoni S, et al. A review of hydrogen storage and transport technologies[J]. Clean Energy, 2023, 7(1): 190-216. |
| 2 | Chatterjee S, Parsapur R K, Huang K W. Limitations of ammonia as a hydrogen energy carrier for the transportation sector[J]. ACS Energy Letters, 2021, 6(12): 4390-4394. |
| 3 | Zhao J Q, Shi R, Li Z H, et al. How to make use of methanol in green catalytic hydrogen production?[J]. Nano Select, 2020, 1(1): 12-29. |
| 4 | 孙晓明, 沙琪昊, 王陈伟, 等. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975-6001. |
| Sun X M, Sha Q H, Wang C W, et al. Application of copper-based catalysts for hydrogen production in methanol steam reforming[J]. CIESC Journal, 2021, 72(12): 5975-6001. | |
| 5 | Nielsen M, Alberico E, Baumann W, et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide[J]. Nature, 2013, 495: 85-89. |
| 6 | Zhou P, Navid I A, Ma Y J, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting[J]. Nature, 2023, 613: 66-70. |
| 7 | Wang L M, Sun Y, Zhang F Y, et al. Precisely constructed metal sulfides with localized single-atom rhodium for photocatalytic C-H activation and direct methanol coupling to ethylene glycol[J]. Advanced Materials, 2023, 35(5): 2205782. |
| 8 | Wang H, Qi H F, Sun X, et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu-TiO2 photocatalysts[J]. Nature Materials, 2023, 22(5): 619-626. |
| 9 | Xiao M, Baktash A, Lyu M Q, et al. Unveiling the role of water in heterogeneous photocatalysis of methanol conversion for efficient hydrogen production[J]. Angewandte Chemie International Edition, 2024, 63(21): e202402004. |
| 10 | Huang H M, Garduño-Castro M H, Morrill C, et al. Catalytic cascade reactions by radical relay[J]. Chemical Society Reviews, 2019, 48(17): 4626-4638. |
| 11 | Shatskiy A, Alvey G R, Kärkäs M D. Chemodivergent difunctionalization of alkenes through base-controlled radical relay[J]. Chem, 2022, 8(1): 12-14. |
| 12 | Zhao L M, Meng Q Y, Fan X B, et al. Photocatalysis with quantum dots and visible light: selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water[J]. Angewandte Chemie International Edition, 2017, 56(11): 3020-3024. |
| 13 | Ren W, Si R R, Wang J H, et al. Study of the different morphologies of Zn0.5Cd0.5S for photocatalytic H2 production[J]. Environmental Science: Advances, 2023, 2(5): 721-730. |
| 14 | He K, Chen N F, Wang C J, et al. Method for determining crystal grain size by X-ray diffraction[J]. Crystal Research and Technology, 2018, 53(2): 1700157. |
| 15 | Sun R H, Zhang J, Jing B Y, et al. CoP3 quantum dots decorated on CdZnS nanorods as Z-scheme p-n heterojunctions for photocatalytic H2 production[J]. ACS Applied Nano Materials, 2024, 7(7): 7122-7131. |
| 16 | Li H Q, Wang X, Xu J Q, et al. One-dimensional CdS nanostructures: a promising candidate for optoelectronics[J]. Advanced Materials, 2013, 25(22): 3017-3037. |
| 17 | Ganesh R S, Durgadevi E, Silambarasan K, et al. Effect of ethylenediamine on morphology of 2D Co-Mo-S@NG hybrids and their enhanced electrocatalytic activity for DSSCs application[J]. Materials Science in Semiconductor Processing, 2020, 105: 104725. |
| 18 | Liang Q, Jin J, Liu C H, et al. Fabrication of the ternary heterojunction Cd0.5Zn0.5S@UIO-66@g-C3N4 for enhanced visible-light photocatalytic hydrogen evolution and degradation of organic pollutants[J]. Inorganic Chemistry Frontiers, 2018, 5(2): 335-343. |
| 19 | Tang Z R, Han B, Han C, et al. One dimensional CdS based materials for artificial photoredox reactions[J]. Journal of Materials Chemistry A, 2017, 5(6): 2387-2410. |
| 20 | Liu S Q, Tang Z R, Sun Y G, et al. One-dimension-based spatially ordered architectures for solar energy conversion[J]. Chemical Society Reviews, 2015, 44(15): 5053-5075. |
| 21 | Tang Z R, Yin X, Zhang Y H, et al. Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity[J]. Inorganic Chemistry, 2013, 52(20): 11758-11766. |
| 22 | Chen M X, Umer K, Li B N, et al. Metalloporphyrin based MOF-545 coupled with solid solution Zn x Cd1- x S for efficient photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2024, 653: 380-389. |
| 23 | Fan Y, Hao X Q, Yi N X, et al. Strong electronic coupling of Mo2TiC2 MXene/ZnCdS ohmic junction for boosting photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environment and Energy, 2024, 357: 124313. |
| 24 | Zhang Z J, Yin Q, Xu L L, et al. Potassium-doped-C3N4/Cd0.5Zn0.5S photocatalysts toward the enhancement of photocatalytic activity under visible-light[J]. Journal of Alloys and Compounds, 2020, 816: 152654. |
| 25 | Wang X, Liu B Y, Ma S Q, et al. Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution[J]. Nature Communications, 2024, 15: 2600. |
| 26 | Khan K, Tao X P, Zhao Y, et al. Spatial separation of dual-cocatalysts on one-dimensional semiconductors for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2019, 7(26): 15607-15614. |
| 27 | Lu X X, Chen W J, Yao Y, et al. Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation[J]. Chemical Engineering Journal, 2021, 420: 127709. |
| 28 | Nakibli Y, Amirav L. Selective growth of Ni tips on nanorod photocatalysts[J]. Chemistry of Materials, 2016, 28(13): 4524-4527. |
| 29 | Wan J, Wang Y, Liu J Q, et al. Full-space electric field in Mo-decorated Zn2In2S5 polarization photocatalyst for oriented charge flow and efficient hydrogen production[J]. Advanced Materials, 2024, 36(31): 2405060. |
| 30 | Wolff C M, Frischmann P D, Schulze M, et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods[J]. Nature Energy, 2018, 3: 862-869. |
| 31 | Khan K, Tao X P, Shi M, et al. Visible-light-driven photocatalytic hydrogen production on Cd0.9Zn0.1S nanorods with an apparent quantum efficiency exceeding 80%[J]. Advanced Functional Materials, 2021, 31(7): 2003731. |
| [1] | 高波, 王佳琪, 刘志亮, 赵玄烈, 葛坤. 海上风电制氢系统建模及热力学与经济学分析[J]. 化工学报, 2025, 76(3): 1207-1220. |
| [2] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [3] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [4] | 白谨豪, 管小平, 杨宁. 压滤式水电解槽乳突板内的流动特性分析与优化[J]. 化工学报, 2025, 76(2): 584-595. |
| [5] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| [6] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
| [7] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| [8] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
| [9] | 纪之骄, 张晓方, 甘汶, 薛云鹏. 载体对单原子电催化剂合成氨性能的影响与调控策略[J]. 化工学报, 2025, 76(1): 18-39. |
| [10] | 郭珊, 田雨, 徐永滨, 王朋, 刘治明. 废旧电池再资源化制备高性能中熵合金催化剂及其性能研究[J]. 化工学报, 2025, 76(1): 231-240. |
| [11] | 邹吉军, 刘宝宏, 史成香, 潘伦, 张香文. 综纤维素衍生物转化合成生物航空燃料的非均相催化剂研究进展[J]. 化工学报, 2025, 76(1): 1-17. |
| [12] | 杨晨, 毛伟, 董兴宗, 田松, 赵锋伟, 吕剑. 选择性加氢脱氯合成烯烃研究进展[J]. 化工学报, 2025, 76(1): 53-70. |
| [13] | 石美琳, 赵连达, 邓行健, 王静松, 左海滨, 薛庆国. 催化甲烷重整工艺的研究进展[J]. 化工学报, 2024, 75(S1): 25-39. |
| [14] | 王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187. |
| [15] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号