化工学报 ›› 2025, Vol. 76 ›› Issue (3): 975-984.DOI: 10.11949/0438-1157.20240890
收稿日期:2024-08-05
修回日期:2024-09-03
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
马志先
作者简介:田浩辰(2000—),男,硕士研究生,2332547790@mail.dlut.edu.cn
基金资助:
Haochen TIAN(
), Zhixian MA(
), Zhihao WANG
Received:2024-08-05
Revised:2024-09-03
Online:2025-03-25
Published:2025-03-28
Contact:
Zhixian MA
摘要:
大型高效热泵用壳管式冷凝器开发需要新环保工质与高效冷凝管组合时的膜状凝结换热特性。实验求解了R1234ze(E)在水平高效冷凝管外膜状凝结换热特性,对比分析了其与R134a在相同水平三维肋管外的膜状凝结特性差异,并建立了R1234ze(E)水平新型三维肋管外冷凝传热系数模型。实验用高效冷凝管为T2铜管,名义外径19.05 mm,肋高0.9 mm,肋底区肋密度为1811片/m(fpm),肋顶区域单周滚扎二次肋片数为77片。结果表明:冷凝温度为38℃时,热通量从23.6增至46.1 kW/m2,R1234ze(E)在实验三维肋管外冷凝传热系数αo,R1234ze(E)从30.9降至26.5 kW/(m2·K)(下降14.2%);同热通量(37.6 kW/m2)下,冷凝温度从30升至46℃,αo,R1234ze(E)从33.9降至24.3 kW/(m2·K)(下降28.3%);同热通量下,R1234ze(E)在实验三维肋管外的冷凝传热系数可达光管的22.9~24.5倍;同冷凝温度(38℃),热通量为10~50 kW/m2时,R1234ze(E)与R134a在实验三维肋管外的冷凝传热系数比为1.09~1.25。研究结果对应用R1234ze(E)与新型三维肋管开发热泵用高效壳管式冷凝器具有参考价值。
中图分类号:
田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984.
Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube[J]. CIESC Journal, 2025, 76(3): 975-984.
| 管类型 | 管外径 do/mm | 管内径 di/mm | 肋密度/ fpm | 一次肋 | 二次肋 | ||||
|---|---|---|---|---|---|---|---|---|---|
肋高 h1/mm | 肋间距 s1/mm | 肋厚度 t1/mm | 肋高 h2/mm | 肋间距 s2/mm | 肋厚度 t2/mm | ||||
| 光管 | 19.05 | 16.50 | — | — | — | — | — | — | — |
| 三维肋管 | 19.05 | 16.41 | 1811 | 0.90 | 0.37 | 0.18 | 0.46 | 0.16 | 0.25 |
表1 三维肋管结构参数
Table 1 Structure parameters of 3D tube
| 管类型 | 管外径 do/mm | 管内径 di/mm | 肋密度/ fpm | 一次肋 | 二次肋 | ||||
|---|---|---|---|---|---|---|---|---|---|
肋高 h1/mm | 肋间距 s1/mm | 肋厚度 t1/mm | 肋高 h2/mm | 肋间距 s2/mm | 肋厚度 t2/mm | ||||
| 光管 | 19.05 | 16.50 | — | — | — | — | — | — | — |
| 三维肋管 | 19.05 | 16.41 | 1811 | 0.90 | 0.37 | 0.18 | 0.46 | 0.16 | 0.25 |
| 管类型 | 管外径/mm | 管内径/mm | 肋高/ mm | 肋间距/mm | 肋密度/fpm |
|---|---|---|---|---|---|
| 3D管(本文) | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
| 3D管[ | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
| C1[ | 18.99 | 17.14 | 0.857 | — | 1772 |
| C2[ | 19.00 | 17.12 | 0.790 | — | 1772 |
| Ti管[ | 16.01 | 14.87 | 0.300 | 0.784 | 1299 |
| Tu管[ | 18.88 | 15.60 | 0.61 | — | 2362 |
表2 文献中换热管规格尺寸
Table 2 Specifications and dimensions of heat exchange tubes in literature
| 管类型 | 管外径/mm | 管内径/mm | 肋高/ mm | 肋间距/mm | 肋密度/fpm |
|---|---|---|---|---|---|
| 3D管(本文) | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
| 3D管[ | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
| C1[ | 18.99 | 17.14 | 0.857 | — | 1772 |
| C2[ | 19.00 | 17.12 | 0.790 | — | 1772 |
| Ti管[ | 16.01 | 14.87 | 0.300 | 0.784 | 1299 |
| Tu管[ | 18.88 | 15.60 | 0.61 | — | 2362 |
图12 R1234ze(E)水平三维肋管外冷凝传热系数模型与实验值对比
Fig.12 Comparison of CHTC coefficient of R1234ze(E) on the test 3D finned tube between experimental result and that predicted by the model
| 1 | Gil B, Kasperski J. Efficiency evaluation of the ejector cooling cycle using a new generation of HFO/HCFO refrigerant as a R134a replacement[J]. Energies, 2018, 11(8): 2136. |
| 2 | Devecioğlu A G, Oruç V. Characteristics of some new generation refrigerants with low GWP[J]. Energy Procedia, 2015, 75: 1452-1457. |
| 3 | Hossain M A, Onaka Y, Miyara A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A[J]. International Journal of Refrigeration, 2012, 35(4): 927-938. |
| 4 | Mota-Babiloni A, Navarro-Esbrí J, Molés F, et al. A review of refrigerant R1234ze(E) recent investigations[J]. Applied Thermal Engineering, 2016, 95: 211-222. |
| 5 | Del Col D, Bortolato M, Azzolin M, et al. Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants[J]. International Journal of Refrigeration, 2015, 50: 87-103. |
| 6 | van Rooyen E, Thome J R. Pool boiling data and prediction method for enhanced boiling tubes with R-134a, R-236fa and R-1234ze(E)[J]. International Journal of Refrigeration, 2013, 36(2): 447-455. |
| 7 | Ko J W, Jeon D S, Kim Y L, et al. Experimental study on film condensation heat transfer characteristics of R1234ze(E) and R1233zd(E) over horizontal plain tubes[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 527-534. |
| 8 | 李莉. 强化管外HFO1234ze凝结及其非稳态特性试验[D]. 郑州: 中原工学院, 2019. |
| Li L. Experiment on condensation and unsteady characteristics of HFO1234ze outside strengthened tube[D]. Zhengzhou: Zhongyuan University of Technology, 2019. | |
| 9 | Nagata R, Kondou C, Koyama S. Comparative assessment of condensation and pool boiling heat transfer on horizontal plain single tubes for R1234ze(E), R1234ze(Z), and R1233zd(E)[J]. International Journal of Refrigeration, 2016, 63: 157-170. |
| 10 | Ji W T, Chong G H, Zhao C Y, et al. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes[J]. International Journal of Refrigeration, 2018, 93: 259-268. |
| 11 | 栾金刚. 水平三维低肋管外凝结传热数值模拟[D]. 郑州: 中原工学院, 2022. |
| Luan J G. Numerical simulation of condensation heat transfer outside horizontal three-dimensional low-ribbed tube[D]. Zhengzhou: Zhongyuan University of Technology, 2022. | |
| 12 | Ko J W, Jeon D S. Experimental study on film condensation heat transfer characteristics of R134a, R1234ze(E) and R1233zd(E) over condensation tube with enhanced surfaces[J]. Heat and Mass Transfer, 2020, 56(11): 3001-3010. |
| 13 | Ji W T, Lu X D, Yu Q N, et al. Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin thickness[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118829. |
| 14 | 谭娟. R1234ze与R134a在低肋管外膜状凝结换热实验研究[D]. 郑州: 中原工学院, 2018. |
| Tan J. Experimental study of R1234ze and R134a on film condensation heat transfer outside the low rib tube[D]. Zhengzhou: Zhongyuan University of Technology, 2022. | |
| 15 | 孙晨, 欧阳新萍, 夏荣鑫. R1234ze(E)与R134a在水平双侧强化管外的凝结换热对比实验[J]. 热能动力工程, 2021, 36(8): 72-77. |
| Sun C, Ouyang X P, Xia R X. Experimental comparison on condensation heat transfer of R1234ze(E) and R134a on horizontal double-sided strengthened tube[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(8): 72-77. | |
| 16 | 党坤儒. R1234ze(E)与R134a在光管与低肋管外凝结传热数值模拟[J]. 科技风, 2021(35): 143-146. |
| Dang K R. Condensation heat transfer characteristics of R1234ze(E) and R134a outside plain and low rib tubes[J]. Technology Wind, 2021(35): 143-146. | |
| 17 | 马志先, 张吉礼, 孙德兴, 等. HFC134a水平二维与三维肋管外冷凝换热特性[J]. 化工学报, 2014, 65(4): 1221-1228. |
| Ma Z X, Zhang J L, Sun D X, et al. Film condensation characteristics of HFC134a on enhanced horizontal tubes with two dimensional and three dimensional integral fins[J]. CIESC Journal, 2014, 65(4): 1221-1228. | |
| 18 | Guo X C, Ma Z X, Chen J D, et al. Precise determination of inundation effect coefficient of film condensation on an array of horizontal new three-dimensional finned tube[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121216. |
| 19 | 马志先. 水平管束外膜状凝结换热试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
| Ma Z X. Experimental and theoretical study on film condensation heat transfer outside horizontal tube bundle[D]. Harbin: Harbin Institute of Technology, 2012. | |
| 20 | Chen J D, Zhang J L, Ma Z X. Precision determination of film condensation row effect of R134a condensation on an array of horizontal plain tubes[J]. Experimental Thermal and Fluid Science, 2019, 109: 109849. |
| 21 | Wilson E E. A basis for rational design of heat transfer apparatus[J]. Transactions of the American Society of Mechanical Engineers, 1915, 37: 47-70. |
| 22 | Gnielinski V. New equations for heat and hass transfer in turbulent pipe and channel flows[J]. Chemical Engineering, 1976, 16(2): 359-368. |
| 23 | Fujii T. Overlooked factors and unsolved problems in experimental research on condensation heat transfer[J]. Experimental Thermal and Fluid Science, 1992, 5(5): 652-663. |
| 24 | Fernández-Seara J, Uhía F J, Sieres J, et al. A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices[J]. Applied Thermal Engineering, 2007, 27(17/18): 2745-2757. |
| 25 | 赵振宇, 张吉礼, 马志先. 凝结换热试验台监控和数据采集系统开发[J]. 建筑热能通风空调, 2015, 34(6): 78-82. |
| Zhao Z Y, Zhang J L, Ma Z X. Development of SCADA system for the experimental plant of condensation heat transfer[J]. Building Energy & Environment, 2015, 34(6): 78-82. | |
| 26 | 马志先, 张吉礼, 孙德兴. HFC245fa水平光管与强化管管束外冷凝换热[J]. 化工学报, 2010, 61(5): 1097-1106. |
| Ma Z X, Zhang J L, Sun D X. Condensation heat transfer coefficient of HFC245fa on horizontal smooth and enhanced tube bundles[J]. CIESC Journal, 2010, 61(5): 1097-1106. | |
| 27 | 张定才, 王凯, 何雅玲,等. R134a在水平双侧强化管外沸腾换热[J]. 化工学报, 2007, 58(11): 2710-2714. |
| Zhang D C, Wang K, He Y L, al et, Boiling heat transfer of R 134 a outside single horizontal doubly-enhanced tubes[J]. CIESC Journal, 2007, 58(11): 2710-2714. | |
| 28 | Nusselt W. Die oberflachen-kondensation des wasserdampfes[J]. Z. Vereines Deutsch. Ing, 1916, 60: 541-546, 569-575. |
| 29 | Gstoehl D, Thome J R. Film condensation of R-134a on tube arrays with plain and enhanced surfaces (part Ⅰ):Experimental heat transfer coefficients[J]. Journal of Heat Transfer, 2006, 128(1): 21-32. |
| 30 | Gstoehl D, Thome J R. Film condensation of R-134a on tube arrays with plain and enhanced surfaces (part Ⅱ):Empirical prediction of inundation effects[J]. Journal of Heat Transfer, 2006, 128(1): 33-43. |
| [1] | 郑欣雨, 任泽华, 周利, 柴士阳, 吉旭. 基于晶体图卷积神经网络的晶格能回归模型[J]. 化工学报, 2025, 76(3): 1084-1092. |
| [2] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [3] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [4] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [5] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [6] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
| [7] | 禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049. |
| [8] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [9] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [10] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [11] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| [12] | 尤潇楠, 范小强, 杨遥, 王靖岱, 阳永荣. 超临界乙烯和高压聚乙烯混合物的减压分离过程建模方法[J]. 化工学报, 2025, 76(2): 695-706. |
| [13] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
| [14] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| [15] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号