化工学报 ›› 2025, Vol. 76 ›› Issue (3): 995-1005.DOI: 10.11949/0438-1157.20240941
收稿日期:
2024-08-20
修回日期:
2024-10-22
出版日期:
2025-03-25
发布日期:
2025-03-28
通讯作者:
沈胜强
作者简介:
张先开(2001—),男,硕士研究生,17752950696@163.com
基金资助:
Xiankai ZHANG(), Boyu WANG, Yali GUO, Shengqiang SHEN(
)
Received:
2024-08-20
Revised:
2024-10-22
Online:
2025-03-25
Published:
2025-03-28
Contact:
Shengqiang SHEN
摘要:
在MATLAB平台上编制了蒸发式冷凝器热力过程计算软件,对水平圆管降膜蒸发式冷凝器的热力性能进行了计算分析,探讨了换热管束外迎面风速和水的喷淋密度对蒸发式冷凝器的换热量、管外传热系数和传质系数的影响规律。计算结果表明,迎面风速增大会提高换热量,且迎面风速对管外液膜产生的扰动会对传质产生较大的影响,风速达到4.21 m·s-1后,空气出口温度和湿度的变化趋势发生反转,更加促进液膜蒸发;增大喷淋密度虽会小幅增加换热量,但管外水膜温度会升高,出口空气湿度下降,阻碍传热和传质的进行,故最佳喷淋密度约为0.068 kg·m-1·s-1。
中图分类号:
张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005.
Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser[J]. CIESC Journal, 2025, 76(3): 995-1005.
管轴向 长度/m | 迎风面 长度/m | 迎风面 宽度/m | 管间距 | 管列数 | 管程数 |
---|---|---|---|---|---|
0.288 | 0.3 | 0.18 | 1.6D | 5 | 6 |
表1 结构参数
Table 1 Structural parameters
管轴向 长度/m | 迎风面 长度/m | 迎风面 宽度/m | 管间距 | 管列数 | 管程数 |
---|---|---|---|---|---|
0.288 | 0.3 | 0.18 | 1.6D | 5 | 6 |
冷凝温度/℃ | 进口空气干球温度/℃ | 进口空气湿度/% | 喷淋水温度/℃ |
---|---|---|---|
26 | 20 | 60 | 25 |
表2 运行参数
Table 2 Operating parameters
冷凝温度/℃ | 进口空气干球温度/℃ | 进口空气湿度/% | 喷淋水温度/℃ |
---|---|---|---|
26 | 20 | 60 | 25 |
冷凝温度/℃ | 进口空气 干球温度/℃ | 进口空气 湿球温度/℃ | 喷淋水温度/℃ |
---|---|---|---|
36 | 31 | 25 | 25 |
表3 运行工况
Table 3 Operating conditions
冷凝温度/℃ | 进口空气 干球温度/℃ | 进口空气 湿球温度/℃ | 喷淋水温度/℃ |
---|---|---|---|
36 | 31 | 25 | 25 |
图5 不同喷淋密度下管外壁与水膜的传热系数和传质系数随迎面风速的变化曲线
Fig.5 The variation curve of heat transfer coefficient and mass transfer coefficient of outer tube wall and water film with head-on wind speed at different spray densities
图9 不同迎面风速下管外循环水温随喷淋密度的变化曲线
Fig.9 The variation curve of water temperature in external circulation with spray density under different head-on wind speed
图10 不同迎面风速下外壁与水膜的传热系数和传质系数随喷淋密度的变化曲线
Fig.10 The variation curve of heat transfer coefficient and mass transfer coefficient with spray density under different head-on wind speed
图13 不同干球温度下换热量和传质传热占比随环境相对湿度的变化曲线
Fig.13 The change curve of the heat transfer and mass transfer heat ratio with the relative humidity of the environment at different dry bulb temperatures
1 | Shah M M. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 547-556. |
2 | Bazán F S V, Bedin L, Bozzoli F. New methods for numerical estimation of convective heat transfer coefficient in circular ducts[J]. International Journal of Thermal Sciences, 2019, 139: 387-402. |
3 | 赵允玉. 水平管内凝结传热与流动阻力的耦合影响研究[D]. 北京: 华北电力大学, 2011. |
Zhao Y Y. Research of heat transfer and flow resistance coupling effect during condensation in horizontal tube[D]. Beijing: North China Electric Power University, 2011. | |
4 | Cavallini A, Col D D, Doretti L, et al. Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design[J]. Heat Transfer Engineering, 2006, 27(8): 31-38. |
5 | Dorao C A, Fernandino M. Simple and general correlation for heat transfer during flow condensation inside plain pipes[J]. International Journal of Heat and Mass Transfer, 2018, 122: 290-305. |
6 | Zhu X J, Chen S, Shen S Q, et al. Experimental study on the heat and mass transfer characteristics of air-water two-phase flow in an evaporative condenser with a horizontal elliptical tube bundle[J]. Applied Thermal Engineering, 2020, 168: 114825. |
7 | 任显龙. 横管降膜蒸发传热实验研究[D]. 大连: 大连理工大学, 2009. |
Ren X L. Experimental investigation on heat transfer of horizontal-tube falling film evaporation[D]. Dalian: Dalian University of Technology, 2009. | |
8 | Liu Z H, Zhu Q Z, Chen Y M. Evaporation heat transfer of falling water film on a horizontal tube bundle[J]. Heat Transfer-Asian Research, 2002, 31(1): 42-55. |
9 | 沈胜强, 陈学, 牟兴森, 等. 管间距对水平管降膜蒸发流动形态和传热的影响[J]. 哈尔滨工程大学学报, 2014, 35(12): 1492-1496. |
Shen S Q, Chen X, Mu X S, et al. The effect of tube spacing on flow pattern and heat transfer of horizontal tube falling film evaporation[J]. Journal of Harbin Engineering University, 2014, 35(12): 1492-1496. | |
10 | Zhang H H, Zhou Y S. Effects of tube shape on the distribution of film thickness and heat transfer performance in falling film evaporation[J]. Heat and Mass Transfer, 2022, 58(9): 1533-1543. |
11 | 邱庆刚, 陈金波. 水平管降膜蒸发器管外液膜的数值模拟[J]. 动力工程学报, 2011, 31(5): 357-361, 374. |
Qiu Q G, Chen J B. Numerical simulation of film formation on horizontal-tube falling film evaporators[J]. Journal of Chinese Society of Power Engineering, 2011, 31(5): 357-361, 374. | |
12 | Liu S L, Mu X S, Shen S Q, et al. Experimental study on the distribution of local heat transfer coefficient of falling film heat transfer outside horizontal tube[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121031. |
13 | Mu X S, Shen S Q, Yang Y, et al. Experimental study of falling film evaporation heat transfer coefficient on horizontal tube[J]. Desalination and Water Treatment, 2012, 50(1/2/3): 310-316. |
14 | Mizushina T, Ito R, Miyashita H. Experimental study of evaporative cooler[J]. Chemical Engineering, 1967, 31(5): 469-473. |
15 | Parker R O, Treybal R E. The heat mass transfer characteristics of evaporative coolers[J]. AIChE Chemical Engineering Progress Symposium Series, 1962, 57(32): 138-149. |
16 | Heyns J A, Kröger D G. Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler[J]. Applied Thermal Engineering, 2010, 30(5): 492-498. |
17 | 沈家龙. 蒸发式冷凝器传热传质理论分析及实验研究[D]. 广州: 华南理工大学, 2005. |
Shen J L. Theoretical analysis and experimental study on heat and mass transfer of evaporative condenser[D]. Guangzhou: South China University of Technology, 2005. | |
18 | 郑伟业. 蒸发式冷却器传热传质的试验研究及数值模拟[D]. 上海: 华东理工大学, 2013. |
Zheng W Y. Experimental investigation and numerical simulation of the heat and mass transfer in evaporative cooler[D]. Shanghai: East China University of Science and Technology, 2013. | |
19 | 姜永永. 水膜蒸发式空冷器传热传质研究及设计程序开发[D]. 武汉: 华中科技大学, 2014. |
Jiang Y Y. Heat and mass transfer research of water film evaporative air cooler and design program development[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
20 | Fiorentino M, Starace G. The design of countercurrent evaporative condensers with the hybrid method[J]. Applied Thermal Engineering, 2018, 130: 889-898. |
21 | 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78. |
Shan S Y, Tan H B. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers[J]. CIESC Journal, 2019, 70(S1): 69-78. | |
22 | 张梦超, 牟兴森, 沈胜强. 水平管外降膜蒸发气水对流过程换热量数值模拟分析[J]. 大连理工大学学报, 2022, 62(2): 172-178. |
Zhang M C, Mu X S, Shen S Q. Numerical simulation analysis of heat transfer in falling film evaporation process of air-water convection outside horizontal tube[J]. Journal of Dalian University of Technology, 2022, 62(2): 172-178. | |
23 | 倪双全. 水平椭圆管蒸发式冷凝器传热传质实验研究[D]. 大连: 大连理工大学, 2018. |
Ni S Q. Experimental study on heat and mass transfer of horizontal oval tube evaporative condenser[D]. Dalian: Dalian University of Technology, 2018. | |
24 | 李纪昌. 蒸发式凝汽器管束阻力和传热传质实验研究[D]. 大连: 大连理工大学, 2021. |
Li J C. Experimental study on tube bundle flow resistance and heat and mass transfer of evaporative condenser[D]. Dalian: Dalian University of Technology, 2021. | |
25 | 蔡祖康, 夏畹, 刘焕成, 等. 蒸发式冷凝器的热力计算[J]. 制冷学报, 1989, 10(4): 1-7. |
Cai Z K, Xia W, Liu H C, et al. Thermodynamic calculation of the evaporative condenser[J]. Journal of Refrigeration, 1989, 10(4): 1-7. | |
26 | 王东屏. 蒸发式冷凝器的设计[J]. 大连铁道学院学报, 1999, 20(1): 45-49. |
Wang D P. Design of evaporative condenser[J]. Journal of Dalian Railway Institute, 1999, 20(1): 45-49. | |
27 | 王少为, 刘震炎. 一种蒸发式冷凝器的新型设计方法[J]. 制冷与空调, 2002, 2(4): 31-35. |
Wang S W, Liu Z Y. A new method to design evaporative condenser[J]. Refrigeration and Air Conditioning, 2002, 2(4): 31-35. | |
28 | 吴金星, 尹凯杰, 潘彦凯, 等. 蒸发式冷凝器的程序化设计及参数动态分析[J]. 流体机械, 2011, 39(3): 75-79. |
Wu J X, Yin K J, Pan Y K, et al. Programmed design and parameter dynamic analyses of evaporative condenser[J]. Fluid Machinery, 2011, 39(3): 75-79. | |
29 | Žukauskas A. Heat transfer from tubes in crossflow[M]//Advances in Heat Transfer. Amsterdam: Elsevier, 1972: 93-160. |
30 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. |
Yang S M, Tao W Q. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. |
[1] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
[2] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
[3] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
[4] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
[5] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
[6] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
[7] | 禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049. |
[8] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
[9] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
[10] | 谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575. |
[11] | 黄鑫, 李逸龙, 李卫东, 施鸿翔, 尹鹏博, 李臻超, 滕霖, 江莉龙. 液氨-成品油混合体系相平衡及减压相变规律研究[J]. 化工学报, 2025, 76(1): 71-80. |
[12] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
[13] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
[14] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[15] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||