| [1] |
中华人民共和国国家发展和改革委员会. 关于推进污水资源化利用的指导意见[R]. (2021-01-11)[2024-11-06].https://www.ndrc.gov.cn/xwdt/tzgg/202101/t20210111_1264795.html.
|
|
National Development and Reform Commission. Duidances on promoting the utilization of polluted water resources[R]. (2021-01-11)[2024-11-06]. https://www.ndrc.gov.cn/xwdt/tzgg/202101//t20210111_1264795.html.
|
| [2] |
徐敏, 张涛, 王东, 等. 中国水污染防治40年回顾与展望[J]. 中国环境管理, 2019, 11(3): 65-71.
|
|
Xu M, Zhang T, Wang D, et al. Review and prospect of water pollution prevention and control of China in the forty years of reform and opening-up[J]. Chinese Journal of Environmental Management, 2019, 11(3): 65-71.
|
| [3] |
蔡婕萍, 左高山, 许和连. 虚拟水: 国际水资源管理与启示[J]. 生态经济, 2019, 35(10): 200-206.
|
|
Cai J P, Zuo G S, Xu H L. Virtual water: the ana-lysis and enlightment of international water resources management[J]. Ecological Economy, 2019, 35(10): 200-206.
|
| [4] |
王功明, 李文静, 乔俊飞. 基于PLSR自适应深度信念网络的出水总磷预测[J]. 化工学报, 2017, 68(5): 1987-1997.
|
|
Wang G M, Li W J, Qiao J F. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network[J]. CIESC Journal, 2017, 68(5): 1987-1997.
|
| [5] |
张帅, 周平. 污水处理过程递推双线性子空间建模及无模型自适应控制[J]. 自动化学报, 2022, 48(7): 1747-1759.
|
|
Zhang S, Zhou P. Recursive dual-line subspace modeling and model-free adaptive control in sewage treatment process[J]. Acta Automatica Sinica, 2022, 48(7): 1747-1759.
|
| [6] |
Wang G M, Jia Q S, Qiao J F, et al. A sparse deep belief network with efficient fuzzy learning framework[J]. Neural Networks, 2020, 121: 430-440.
|
| [7] |
郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254.
|
|
Guo X, Li W J, Qiao J F. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network[J]. CIESC Journal, 2024, 75(9): 3242-3254.
|
| [8] |
王康成, 尚超, 柯文思, 等. 化工过程深度神经网络软测量的结构与参数自动调整方法[J]. 化工学报, 2018, 69(3): 900-906.
|
|
Wang K C, Shang C, Ke W S, et al. Automatic structure and parameters tuning method for deep neural network soft sensor in chemical industries[J]. CIESC Journal, 2018, 69(3): 900-906.
|
| [9] |
Wang G M, Jia Q S, Zhou M C, et al. Artificial neural networks for water quality soft-sensing in wastewater treatment: a review[J]. Artificial Intelligence Review, 2022, 55(1): 565-587.
|
| [10] |
Foschi J, Turolla A, Antonelli M. Soft sensor predictor of E.coli concentration based on conventional monitoring parameters for wastewater disinfection control[J]. Water Research, 2021, 191: 116806.
|
| [11] |
韩红桂, 陈治远, 乔俊飞, 等. 基于区间二型模糊神经网络的出水氨氮软测量[J]. 化工学报, 2017, 68(3): 1032-1040.
|
|
Han H G, Chen Z Y, Qiao J F, et al. Soft-sensor method for effluent ammonia nitrogen based on interval type-2 fuzzy neural networks[J]. CIESC Journal, 2017, 68(3): 1032-1040.
|
| [12] |
廉小亲, 王俐伟, 安飒, 等. 基于SOM-RBF神经网络的COD软测量方法[J]. 化工学报, 2019, 70(9): 3465-3472.
|
|
Lian X Q, Wang L W, An S, et al. On soft sensor of chemical oxygen demand by SOM-RBF neural network[J]. CIESC Journal, 2019, 70(9): 3465-3472.
|
| [13] |
闻超垚, 周平. 污水处理过程出水水质稀疏鲁棒建模[J]. 自动化学报, 2022, 48(6): 1469-1481.
|
|
Wen C Y, Zhou P. Sparse robust modeling of effluent quality indices in wastewater treatment process[J]. Acta Automatica Sinica, 2022, 48(6): 1469-1481.
|
| [14] |
张瑞垚, 周平. 基于鲁棒加权模糊聚类的污水处理过程监测方法[J]. 自动化学报, 2022, 48(9): 2198-2211.
|
|
Zhang R Y, Zhou P. Robust weighted fuzzy clustering for sewage treatment process monitoring[J]. Acta Automatica Sinica, 2022, 48(9): 2198-2211.
|
| [15] |
李文静, 李萌, 乔俊飞. 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695.
|
|
Li W J, Li M, Qiao J F. Effluent BOD soft measurement based on mutual information and self-organizing RBF neural network[J]. CIESC Journal, 2019, 70(2): 687-695.
|
| [16] |
曹跃, 陈志文, 袁小锋, 等. 部分子块通讯的分布式PCA厂级工业过程监测方法[J]. 控制与决策, 2020, 35(6): 1281-1290.
|
|
Cao Y, Chen Z W, Yuan X F, et al. Distributed PCA for plant-wide processes monitoring with partial block communication[J]. Control and Decision, 2020, 35(6): 1281-1290.
|
| [17] |
Heo S, Nam K, Loy-Benitez J, et al. Data-driven hybrid model for forecasting wastewater influent loads based on multimodal and ensemble deep learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6925-6934.
|
| [18] |
钱锋, 杜文莉, 钟伟民, 等. 石油和化工行业智能优化制造若干问题及挑战[J]. 自动化学报, 2017, 43(6): 893-901.
|
|
Qian F, Du W L, Zhong W M, et al. Problems and challenges of smart optimization manufacturing in petrochemical industries[J]. Acta Automatica Sinica, 2017, 43(6): 893-901.
|
| [19] |
韩红桂, 张琳琳, 伍小龙, 等. 数据和知识驱动的城市污水处理过程多目标优化控制[J]. 自动化学报, 2021, 47(11): 2538-2546.
|
|
Han H G, Zhang L L, Wu X L, et al. Data-knowledge driven multiobjective optimal control for municipal wastewater treatment process[J]. Acta Automatica Sinica, 2021, 47(11): 2538-2546.
|
| [20] |
佟素娟, 薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究[J]. 现代盐化工, 2023, 50(4): 35-37.
|
|
Tong S J, Xue T L. Study on prediction model of total phosphorus in effluent of reclaimed water plant based on PSO-ACO algorithm[J]. Modern Salt Chemical Industry, 2023, 50(4): 35-37.
|
| [21] |
Wang K, Yuan X F, Chen J, et al. Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring[J]. Neural Networks, 2021, 136: 54-62.
|
| [22] |
孙铭, 魏守科, 王莹洁, 等. 基于小波分解的LSTM水质预测模型[J]. 计算机系统应用, 2020, 29(12): 55-63.
|
|
Sun M, Wei S K, Wang Y J, et al. Prediction model of water quality based on wavelet decomposition and LSTM[J]. Computer Systems & Applications, 2020, 29(12): 55-63.
|
| [23] |
Zhou H B, Qiao J F. Soft sensing of effluent ammonia nitrogen using rule automatic formation-based adaptive fuzzy neural network[J]. Desalination and Water Treatment, 2019, 140: 132-142.
|
| [24] |
Wang G M, Qiao J F. An efficient self-organizing deep fuzzy neural network for nonlinear system modeling[J]. IEEE Transaction on Fuzzy Systems, 2022, 30(7): 2170-2182.
|
| [25] |
Du S L, Zhang Q D, Han H G, et al. Event-triggered model predictive control of wastewater treatment plants[J]. Journal of Water Process Engineering, 2022, 47: 102765.
|
| [26] |
Liu Z, Han H G, Yang H Y, et al. Knowledge-aided and data-driven fuzzy decision making for sludge bulking[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(4): 1189-1201.
|
| [27] |
Wang G M, Chen H, Han H G, et al. Predicting water quality with nonstationarity: event-triggered deep fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(5): 2690-2699.
|
| [28] |
Wu Z J, Jia Q S, Guan X H. Optimal control of multiroom HVAC system: an event-based approach[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 662-669.
|
| [29] |
Cao X R. Stochastic learning and optimization—A sensitivity-based approach[J]. Annual Reviews in Control, 2009, 33(1):11-24.
|
| [30] |
Wang G M, Chen H, Jiang S L, et al. Neurodynamics-driven prediction model for state evolution of coastal water quality[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2519409.
|
| [31] |
Bi J, Lin Y Z, Dong Q X, et al. Large-scale water quality prediction with integrated deep neural network[J]. Information Sciences, 2021, 571: 191-205.
|