化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4325-4336.DOI: 10.11949/0438-1157.20190453
收稿日期:
2019-05-05
修回日期:
2019-08-05
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
熊伟丽
作者简介:
李永明(1996—),男,硕士研究生,基金资助:
Yongming LI1(),Xudong SHI1,Weili XIONG1,2()
Received:
2019-05-05
Revised:
2019-08-05
Online:
2019-11-05
Published:
2019-11-05
Contact:
Weili XIONG
摘要:
针对污水处理过程中能耗大和罚款高等问题,设计了一种基于工况识别的污水处理智能优化控制系统。为保证工况识别的准确性和实时性,利用自适应遗传算法从多种入水参数中选取参考变量,然后基于建立的历史知识库,对入水实时工况进行识别。针对能耗和罚款的多目标优化问题,基于历史知识的引导,通过智能决策的方法从
中图分类号:
李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制[J]. 化工学报, 2019, 70(11): 4325-4336.
Yongming LI, Xudong SHI, Weili XIONG. Condition recognition based intelligent multi-objective optimal control for wastewater treatment[J]. CIESC Journal, 2019, 70(11): 4325-4336.
项目 | PID1 | PID2 | PID3 |
---|---|---|---|
控制对象 | | | |
操纵变量 | | | |
设定值 | | | |
表1 控制器的控制结构
Table 1 Structure of controllers
项目 | PID1 | PID2 | PID3 |
---|---|---|---|
控制对象 | | | |
操纵变量 | | | |
设定值 | | | |
AGA | 种群大小 | 最大迭代次数 | 个体维数 | 自适应交叉变异系数 | ||
---|---|---|---|---|---|---|
120 | 100 | 16 | k 1=0.5,k 2=0.7,k 3=0.02,k 4=0.03 | |||
MOPSO | 种群大小 | 最大迭代次数 | 粒子维数 | 粒子位置限制 | 速度限制 | |
150 | 100 | 3 | 同控制器设定值范围 | 0~0.3 | 100 |
表2 AGA和MOPSO参数设置
Table 2 Parameter settings of AGA and MOPSO
AGA | 种群大小 | 最大迭代次数 | 个体维数 | 自适应交叉变异系数 | ||
---|---|---|---|---|---|---|
120 | 100 | 16 | k 1=0.5,k 2=0.7,k 3=0.02,k 4=0.03 | |||
MOPSO | 种群大小 | 最大迭代次数 | 粒子维数 | 粒子位置限制 | 速度限制 | |
150 | 100 | 3 | 同控制器设定值范围 | 0~0.3 | 100 |
建模 | BPNN | SVM | LSSVM | ||
---|---|---|---|---|---|
网络结构 | 神经元个数 | 激活函数 | 正则化常数 | 核函数 | |
参考变量与能耗/罚款建模 | 输入层、隐含层1、隐含层2、输出层 | 隐含层1个数20,隐含层2个数5 | Sigmoid | 1000 | 高斯核,带宽为2 |
控制器设定值建模与能耗/罚款建模 | 输入层、隐含层1、隐含层2、输出层 | 隐含层1个数10,隐含层2个数5 | Sigmoid | 11000 | 高斯核,带宽为1 |
表3 BPNN和LSSVM参数设置
Table 3 Parameter settings of BPNN and LSSVM
建模 | BPNN | SVM | LSSVM | ||
---|---|---|---|---|---|
网络结构 | 神经元个数 | 激活函数 | 正则化常数 | 核函数 | |
参考变量与能耗/罚款建模 | 输入层、隐含层1、隐含层2、输出层 | 隐含层1个数20,隐含层2个数5 | Sigmoid | 1000 | 高斯核,带宽为2 |
控制器设定值建模与能耗/罚款建模 | 输入层、隐含层1、隐含层2、输出层 | 隐含层1个数10,隐含层2个数5 | Sigmoid | 11000 | 高斯核,带宽为1 |
Model | OCI | EQI | ||
---|---|---|---|---|
RMSE | RRMSE | RMSE | RRMSE | |
PLS | 98.4453 | 0.0252 | 869.3646 | 0.1425 |
BPNN | 138.5836 | 0.0354 | 784.6886 | 0.1286 |
SVM | 152.0103 | 0.0389 | 593.0627 | 0.0972 |
GPR | 89.9344 | 0.0230 | 683.8666 | 0.1121 |
LSSVM | 71.8087 | 0.0184 | 433.9814 | 0.0711 |
表4 参考变量与能耗/罚款之间的模型精度对比
Table 4 Comparisons of modeling accuracy between reference variables and energy/penalty
Model | OCI | EQI | ||
---|---|---|---|---|
RMSE | RRMSE | RMSE | RRMSE | |
PLS | 98.4453 | 0.0252 | 869.3646 | 0.1425 |
BPNN | 138.5836 | 0.0354 | 784.6886 | 0.1286 |
SVM | 152.0103 | 0.0389 | 593.0627 | 0.0972 |
GPR | 89.9344 | 0.0230 | 683.8666 | 0.1121 |
LSSVM | 71.8087 | 0.0184 | 433.9814 | 0.0711 |
Model | OCI | EQI | ||
---|---|---|---|---|
RMSE | RRMSE | RMSE | RRMSE | |
PLS | 42.7990 | 1.35×10-2 | 1.9910 | 3.81×10-4 |
BPNN | 86.8150 | 2.73×10-2 | 1.9451 | 3.72×10-4 |
SVM | 12.5423 | 4.00×10-3 | 1.4167 | 2.71×10-4 |
GPR | 1.2121 | 3.82×10-4 | 0.1444 | 0.28×10-4 |
LSSVM | 1.1964 | 3.77×10 - 4 | 0.0843 | 0.16×10 - 4 |
表5 设定值与能耗/罚款之间的模型精度对比
Table 5 Comparisons of modeling accuracy between set value and energy/penalty
Model | OCI | EQI | ||
---|---|---|---|---|
RMSE | RRMSE | RMSE | RRMSE | |
PLS | 42.7990 | 1.35×10-2 | 1.9910 | 3.81×10-4 |
BPNN | 86.8150 | 2.73×10-2 | 1.9451 | 3.72×10-4 |
SVM | 12.5423 | 4.00×10-3 | 1.4167 | 2.71×10-4 |
GPR | 1.2121 | 3.82×10-4 | 0.1444 | 0.28×10-4 |
LSSVM | 1.1964 | 3.77×10 - 4 | 0.0843 | 0.16×10 - 4 |
指标 | 晴天 | 雨天 | 暴雨天 | |||
---|---|---|---|---|---|---|
AAE | TP | AAE | TP | AAE | TP | |
PID1( | 5.0×10-2 | 0.8831 | 5.0×10-2 | 0.8940 | 5.1×10-2 | 0.8876 |
PID2( | 7.5×10-3 | 0.9880 | 7.6×10-3 | 0.9887 | 7.3×10-3 | 0.9886 |
PID3( | 5.9×10-3 | 0.9932 | 5.8×10-3 | 0.9928 | 5.9×10-3 | 0.9930 |
表6 三种天气下控制器的性能指标
Table 6 Performances indicators of each controller in three weather conditions
指标 | 晴天 | 雨天 | 暴雨天 | |||
---|---|---|---|---|---|---|
AAE | TP | AAE | TP | AAE | TP | |
PID1( | 5.0×10-2 | 0.8831 | 5.0×10-2 | 0.8940 | 5.1×10-2 | 0.8876 |
PID2( | 7.5×10-3 | 0.9880 | 7.6×10-3 | 0.9887 | 7.3×10-3 | 0.9886 |
PID3( | 5.9×10-3 | 0.9932 | 5.8×10-3 | 0.9928 | 5.9×10-3 | 0.9930 |
方法 | 晴天 | 雨天 | 暴雨天 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OCI | EQI | OCI | EQI | OCI | EQI | |||||||
Openloop | 3729.3 | — | 6590.3 | — | 3729.3 | — | 7701.6 | — | 3729.3 | — | 7244.0 | — |
CCS | 3907.7 | ↑4.77% | 6101.2 | ↓7.42% | 3918.2 | ↑5.07% | 7118.5 | ↓7.57% | 3931.2 | ↑5.41% | 6641.7 | ↓8.31% |
SOOC | 3819.7 | ↑2.37% | 6205.8 | ↓5.83% | 3830.9 | ↑2.72% | 7215.2 | ↓6.32% | 3830.9 | ↑2.72% | 7215.2 | ↓0.40% |
NSGAII | 3705.6 | ↓0.64% | 6466.8 | ↓1.87% | 3723.8 | ↓0.14% | 7369.0 | ↓4.32% | 3694.3 | ↓0.94% | 7055.3 | ↓2.60% |
MOPSO | 3656.3 | ↓1.95% | 6348.7 | ↓3.67% | 3676.3 | ↓1.42% | 7461.3 | ↓3.12% | 3673.6 | ↓1.49% | 7089.8 | ↓2.13% |
CRBMO | 3303.3 | ↓11.42% | 6273.8 | ↓4.80% | 3275.4 | ↓12.17% | 7407.1 | ↓3.82% | 3313.6 | ↓11.15% | 6878.9 | ↓5.04% |
表7 三种天气下不同控制方法的能耗和罚款
Table 7 Energy and penalty under different control methods in three weather conditions
方法 | 晴天 | 雨天 | 暴雨天 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OCI | EQI | OCI | EQI | OCI | EQI | |||||||
Openloop | 3729.3 | — | 6590.3 | — | 3729.3 | — | 7701.6 | — | 3729.3 | — | 7244.0 | — |
CCS | 3907.7 | ↑4.77% | 6101.2 | ↓7.42% | 3918.2 | ↑5.07% | 7118.5 | ↓7.57% | 3931.2 | ↑5.41% | 6641.7 | ↓8.31% |
SOOC | 3819.7 | ↑2.37% | 6205.8 | ↓5.83% | 3830.9 | ↑2.72% | 7215.2 | ↓6.32% | 3830.9 | ↑2.72% | 7215.2 | ↓0.40% |
NSGAII | 3705.6 | ↓0.64% | 6466.8 | ↓1.87% | 3723.8 | ↓0.14% | 7369.0 | ↓4.32% | 3694.3 | ↓0.94% | 7055.3 | ↓2.60% |
MOPSO | 3656.3 | ↓1.95% | 6348.7 | ↓3.67% | 3676.3 | ↓1.42% | 7461.3 | ↓3.12% | 3673.6 | ↓1.49% | 7089.8 | ↓2.13% |
CRBMO | 3303.3 | ↓11.42% | 6273.8 | ↓4.80% | 3275.4 | ↓12.17% | 7407.1 | ↓3.82% | 3313.6 | ↓11.15% | 6878.9 | ↓5.04% |
1 | Zhao J , Gui L , Wang Q , et al . Aged refuse enhances anaerobic digestion of waste activated sludge.[J]. Water Research, 2017, 123: 724-733. |
2 | Santín I , Pedret C , Vilanova R , et al . Advanced decision control system for effluent violations removal in wastewater treatment plants[J]. Control Engineering Practice, 2016, 49: 60-75. |
3 | Wang L , Qiang Z , Li Y , et al . An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristics[J]. Journal of Environmental Sciences, 2017, 56(6): 263-271. |
4 | O’Brien M , Mack J , Lennox B , et al . Model predictive control of an activated sludge process: a case study[J]. Control Engineering Practice, 2015, 19(1): 54-61. |
5 | 中华人民共和国生态环境部 . 2017 中国生态环境状况公报[EB/OL]. (2018-05-31)[2019-04-29]. |
Ministry of Ecological Environment of the People's Republic of China. Bulletin on the State of Ecological Environment of China, 2017[EB/OL]. (2018-05-31)[2019-04-29]. | |
6 | Hreiz R , Latifi M A , Roche N . Optimal design and operation of activated sludge processes: state-of-the-art[J]. Chemical Engineering Journal, 2015, 281: 900-920. |
7 | 魏伟, 王小艺, 王藩, 等 . 基于线性自抗扰的城市污水脱氮控制仿真[J]. 化工学报, 2016, 67(3): 1032-1039. |
Wei W , Wang X Y , Wang P , et al . Nitrogen removal in wastewater treatment processes based on linear active disturbance rejection control and its dynamic simulation[J]. CIESC Journal, 2016, 67(3): 1032-1039. | |
8 | Oturan M A , Aaron J J . Advanced oxidation processes in water/wastewater treatment: principles and applications. A review[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(23): 2577-2641. |
9 | Machado V C , Gabriel D , Lafuente J , et al . Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP[J]. Water Research, 2009, 43(20): 5129-5141. |
10 | Ostace G S , Baeza J A , Guerrero J , et al . Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus[J]. Computers & Chemical Engineering, 2013, 53: 164-177. |
11 | Zhang R , Xie W M , Yu H Q , et al . Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method[J]. Bioresource Technology, 2014, 157: 161-165. |
12 | Piotrowski R , Brdys M A , Konarczak K , et al . Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice, 2008, 16(1): 114-131. |
13 | Ostace G S , Baeza J A , Guerrero J , et al . Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus[J]. Computers & Chemical Engineering, 2013, 53(4): 164-177. |
14 | Machado V C , Gabriel D , Lafuente J , et al . Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP[J]. Water Research, 2009, 43(20): 5129-5141. |
15 | Dai H , Chen W , Lu X . The application of multi-objective optimization method for activated sludge process: a review[J]. Water Science & Technology, 2016, 73(2): 223-235. |
16 | Sweetapple C , Fu G , Butler D . Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55: 52-62. |
17 | Chen W , Lu X , Yao C . Optimal strategies evaluated by multi-objective optimization method for improving the performance of a novel cycle operating activated sludge process[J]. Chemical Engineering Journal, 2015, 260: 492-502. |
18 | Hreiz R , Roche N , Benyahia B , et al . Multi-objective optimal control of small-size wastewater treatment plants[J]. Chemical Engineering Research & Design, 2015, 102: 345-353. |
19 | Santín I , Pedret C , Vilanova R . Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process[J]. Journal of Process Control, 2015, 28: 40-55. |
20 | 周红标, 乔俊飞 . 混合多目标骨干粒子群优化算法在污水处理过程优化控制中的应用[J]. 化工学报, 2017, 68(9): 3511-3521. |
Zhou H B , Qiao J F . Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm[J]. CIESC Journal, 2017, 68(9): 3511-3521. | |
21 | 乔俊飞, 韩改堂, 周红标 . 基于知识的污水生化处理过程智能优化方法[J]. 自动化学报, 2017, 43(6): 1038-1046. |
Qiao J F , Hang G T , Zhou H B . Knowledge-based intelligent optimal control for wastewater biochemical treatment process[J]. Acta Automatica Sinica, 2017, 43(6): 1038-1046. | |
22 | Francisco M , Vega P , Revollar S . Model predictive control of BSM1 benchmark of wastewater treatment process: a tuning procedure[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, 2011: 7057-7062. |
23 | Santín I , Barbu M , Pedret C , et al . Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation[J]. Water Research, 2017, 125: 466-477. |
24 | Jeppsson U , Pons M N . The COST benchmark simulation model-current state and future perspective[J]. Control Engineering Practice, 2004, 12(3): 299-304. |
25 | 颜晓娟, 龚仁喜, 张千锋 . 优化遗传算法寻优的SVM在短期风速预测中的应用[J]. 电力系统保护与控制, 2016, 44(9): 38-42. |
Yan X J , Gong R X , Zhang Q F . Application of optimization SVM based on improved genetic algorithm in short-term wind speed prediction[J]. Power System Protection and Control, 2016, 44(9): 38-42. | |
26 | Li K , Kwong S , Zhang Q , et al . Interrelationship-based selection for decomposition multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(10): 2076-2088. |
27 | Morris G M , Goodsell D S , Halliday R S , et al . Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of Computational Chemistry, 2015, 19(14): 1639-1662. |
28 | Li M , Yang S , Liu X . Diversity comparison of Pareto front approximations in many-objective optimization[J]. IEEE Trans Cybern, 2017, 44(12): 2568-2584. |
29 | Wang G G , Gandomi A H , Alavi A H , et al . A hybrid method based on krill herd and quantum-behaved particle swarm optimization[J]. Neural Computing & Applications, 2016, 27(4): 989-1006. |
30 | Mouazen A M , Kuang B , de Baerdemaeker J , et al . Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy[J]. Geoderma, 2010, 158(1/2): 23-31. |
31 | Koriyama T , Nose T , Kobayashi T . Statistical parametric speech synthesis based on Gaussian process regression[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 8(2): 173-183. |
32 | Qiao J , Zhang W . Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing and Applications, 2018, 29(11): 1261-1271. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[14] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[15] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||