化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2991-3001.DOI: 10.11949/0438-1157.20240219
朱楼(), 宋杨凡(
), 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔
收稿日期:
2024-02-29
修回日期:
2024-05-25
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
宋杨凡
作者简介:
朱楼(1992—),男,博士研究生,120192102079@ncepu.edu.cn
基金资助:
Lou ZHU(), Yangfan SONG(
), Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI
Received:
2024-02-29
Revised:
2024-05-25
Online:
2024-08-25
Published:
2024-08-21
Contact:
Yangfan SONG
摘要:
为进一步提升微生物燃料电池(MFC)的电化学性能,设计并搭建了一个中心脉冲气-液-固循环流化床微生物燃料电池(CPCFB-MFC),通过设计多组实验工况研究了脉冲液流频率和幅值、颗粒循环速率及气体流量对CPCFB-MFC产电及污水处理特性的影响。在中心液流脉冲频率为0.25 Hz、脉冲幅值为0.08 m/s、颗粒循环速率为3.3 kg/(m2·s)、气体流量为2 L/min条件下,CPCFB-MFC的输出电压达到最高(为649.2 mV),此时污水处理时间最短(为77 h)。通过对比不同工况的污水处理效率和综合能耗,证明了在反应器内采用脉冲液流和气-液-固循环运行方式能进一步提升MFC的综合性能。这项工作对推动微生物燃料电池技术的产业化具有重要意义。
中图分类号:
朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001.
Lou ZHU, Yangfan SONG, Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI. Power generation characteristics of central pulse gas-liquid-solid circulating fluidized bed microbial fuel cell[J]. CIESC Journal, 2024, 75(8): 2991-3001.
试剂 | 浓度/(g/L) |
---|---|
Na2HPO4·12H2O | 11.55 |
NaH2PO4 | 2.13 |
CH3COONa | 1 |
NaCl | 1 |
NH4Cl | 0.31 |
KCl | 0.13 |
CaCl2 | 0.10 |
表1 自配污水主要成分
Table 1 Main components of self-configured wastewater
试剂 | 浓度/(g/L) |
---|---|
Na2HPO4·12H2O | 11.55 |
NaH2PO4 | 2.13 |
CH3COONa | 1 |
NaCl | 1 |
NH4Cl | 0.31 |
KCl | 0.13 |
CaCl2 | 0.10 |
工况 | 脉冲液流 频率f/Hz | 脉冲液流幅值A /(m/s) | 颗粒循环速率Gs /(kg/(m2⋅s)) | 气体流量Qg/(L/min) |
---|---|---|---|---|
1 | 0 | 0.08 | 2.2 | 2 |
2 | 0.125 | 0.08 | 2.2 | 2 |
3 | 0.25 | 0.08 | 2.2 | 2 |
4 | 0.5 | 0.08 | 2.2 | 2 |
5 | 0.25 | 0.06 | 2.2 | 2 |
6 | 0.25 | 0.1 | 2.2 | 2 |
7 | 0.25 | 0.12 | 2.2 | 2 |
8 | 0.25 | 0.08 | 1.1 | 2 |
9 | 0.25 | 0.08 | 3.3 | 2 |
10 | 0.25 | 0.08 | 4.4 | 2 |
11 | 0.25 | 0.08 | 2.2 | 0 |
12 | 0.25 | 0.08 | 2.2 | 1 |
13 | 0.25 | 0.08 | 2.2 | 3 |
14 | 0 | 0.08 | 2.2 | 0 |
表2 实验工况
Table 2 Experimental conditions
工况 | 脉冲液流 频率f/Hz | 脉冲液流幅值A /(m/s) | 颗粒循环速率Gs /(kg/(m2⋅s)) | 气体流量Qg/(L/min) |
---|---|---|---|---|
1 | 0 | 0.08 | 2.2 | 2 |
2 | 0.125 | 0.08 | 2.2 | 2 |
3 | 0.25 | 0.08 | 2.2 | 2 |
4 | 0.5 | 0.08 | 2.2 | 2 |
5 | 0.25 | 0.06 | 2.2 | 2 |
6 | 0.25 | 0.1 | 2.2 | 2 |
7 | 0.25 | 0.12 | 2.2 | 2 |
8 | 0.25 | 0.08 | 1.1 | 2 |
9 | 0.25 | 0.08 | 3.3 | 2 |
10 | 0.25 | 0.08 | 4.4 | 2 |
11 | 0.25 | 0.08 | 2.2 | 0 |
12 | 0.25 | 0.08 | 2.2 | 1 |
13 | 0.25 | 0.08 | 2.2 | 3 |
14 | 0 | 0.08 | 2.2 | 0 |
1 | Ardakani M N, Gholikandi G B. Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery — a state-of-the-art review[J]. Biomass and Bioenergy, 2020, 141: 105726. |
2 | Sonawane A V, Rikame S, Sonawane S H, et al. A review of microbial fuel cell and its diversification in the development of green energy technology[J]. Chemosphere, 2024, 350: 141127. |
3 | Hassan M, Kanwal S, Singh R S, et al. Current challenges and future perspectives associated with configuration of microbial fuel cell for simultaneous energy generation and wastewater treatment[J]. International Journal of Hydrogen Energy, 2024, 50: 323-350. |
4 | Nkuna S G, Olwal T O, Chowdhury S D, et al. A review of wastewater sludge-to-energy generation focused on thermochemical technologies: an improved technological, economical and socio-environmental aspect[J]. Cleaner Waste Systems, 2024, 7: 100130. |
5 | Han J Y, Zhang H L, Guo H, et al. A rational designed synthetic three-species alliance system for synergetic improvement on power generation from microbial fuel cell[J]. Chemical Engineering Journal, 2024, 481: 148366. |
6 | Sharma A, Chhabra M. The versatility of microbial fuel cells as tools for organic matter monitoring[J]. Bioresource Technology, 2023, 377: 128949. |
7 | Pandya R S, Kaur T, Bhattacharya R, et al. Harnessing microorganisms for bioenergy with microbial fuel cells: powering the future[J]. Water-Energy Nexus, 2024, 7: 1-12. |
8 | Jalili P, Ala A, Nazari P, et al. A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms[J]. Heliyon, 2024, 10(3): e25439. |
9 | Liu S H, You S S, Lin C W, et al. Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation[J]. Renewable Energy, 2022, 199: 1318-1328. |
10 | Kamali M, Guo Y T, Aminabhavi T M, et al. Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113095. |
11 | Barletta M, Melo R C B, Whitfield A K. Past and present conservation of South American Estuaries[J]. Estuarine, Coastal and Shelf Science, 2023, 295: 108542. |
12 | Liang Y, Yu D, Ma H, et al. Progress in enhancing the remediation performance of microbial fuel cells for contaminated groundwater[J]. Journal of Environmental Sciences, 2024, 145: 28-49. |
13 | Xiao N, Wu R, Huang J J, et al. Anode surface modification regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor[J]. Chemical Engineering Science, 2020, 221: 115691. |
14 | Liu H Z, Chen T Z, Li J C. Exogenous electric field as a biochemical driving factor for extracellular electron transfer: increasing power output of microbial fuel cell[J]. Energy Conversion and Management, 2024, 301: 118050. |
15 | Raghavulu S V, Mohan S V, Goud R K, et al. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes[J]. Electrochemistry Communications, 2009, 11(2): 371-375. |
16 | Niu Y J, Liu X M, Chang G Z, et al. Treatment of isopropanol wastewater in an anaerobic fluidized bed microbial fuel cell filled with macroporous adsorptive resin as multifunctional biocarrier[J]. Science of the Total Environment, 2020, 719: 137495. |
17 | Huang J S, Yang P, Guo Y, et al. Electricity generation during wastewater treatment: an approach using an AFB-MFC for alcohol distillery wastewater[J]. Desalination, 2011, 276(1/2/3): 373-378. |
18 | Zhang X L, Li C H, Guo Q J, et al. Performance of anaerobic fluidized bed microbial fuel cell with different porous anodes[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 846-853. |
19 | Chen H W, Jiang H J, Song Y F, et al. Impact of liquid velocity and stacking modes on the performance of anaerobic fluidized bed microbial fuel cell[J]. Powder Technology, 2024, 433: 119264. |
20 | Song Y F, Wang X X, Liu Y L, et al. Power generation characteristics of pulsed anaerobic fluidized bed microbial fuel cell[J]. Powder Technology, 2023, 416: 118215. |
21 | Zhu L, Chen H W, Song Y F, et al. Study on flow characteristics of gas-liquid-solid circulating fluidized bed with central sinusoidal pulsating flow[J]. Powder Technology, 2023, 421: 118415. |
22 | Razzak S A, Zhu J X, Barghi S. Radial distributions of phase holdups and phase propagation velocities in a three-phase gas-liquid-solid fluidized bed (GLSCFB) riser[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 281-289. |
23 | Yang C, Xiao N, Yang S S, et al. Micro response mechanism of mini MFC sensor performance to temperature and its applicability to actual wastewater[J]. Chemical Engineering Science, 2022, 263: 118124. |
24 | Ya T, Huang Y, Wang K N, et al. Functional stability correlates with dynamic microbial networks in anammox process[J]. Bioresource Technology, 2023, 370: 128557. |
25 | Zhang K, Cao H L, Luo H B, et al. Enhanced MFC sensor performances and extracellular electron transport efficiency mediated by biochar and underlying biochemical mechanisms[J]. Journal of Environmental Management, 2023, 332: 117282. |
26 | Niestępski S, Harnisz M, Ciesielski S, et al. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants[J]. Journal of Hazardous Materials, 2020, 394: 122544. |
27 | Kim M, Cui F H. Identification of bacterial communities in conventional wastewater treatment sludge to inform inoculation of the anammox process[J]. Chemosphere, 2023, 311: 137167. |
28 | Rismani-Yazdi H, Carver S M, Christy A D, et al. Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population[J]. Bioresource Technology, 2013, 129: 281-288. |
29 | Wang Y, Wang Q J, Zhao X, et al. Carbon skeleton dispersed nano-jarosite for efficient Cr(Ⅵ) degradation: a bioinspired MFC cathode catalyst[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112003. |
30 | Zhu L, Song Y F, Chen H W, et al. Hydrodynamic characteristics of central pulse gas-liquid-solid circulating fluidized bed: effect of gas and solid parameters[J]. Powder Technology, 2023, 429: 118922. |
31 | Chen H W, Zhu L, Song Y F, et al. Study on flow characteristics of bidirectional sinusoidal liquid pulsed gas-liquid-solid multiphase fluidized bed[J]. Chemical Engineering Research and Design, 2022, 183: 104-117. |
32 | Bai Y N, Zhang F, Yu L P, et al. Acetate and electricity generation from methane in conductive fiber membrane-microbial fuel cells[J]. Science of the Total Environment, 2022, 804: 150147. |
33 | Godain A, Vogel T M, Fongarland P, et al. Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells[J]. Biosensors and Bioelectronics, 2024, 244: 115806. |
34 | Biswas A, Chakraborty S. Assessment of microbial population in integrated CW-MFC system and investigation of organics and fecal coliform removal pathway[J]. Science of the Total Environment, 2024, 912: 168809. |
35 | Zuo R Z, Ren D J, Deng Y F, et al. Employing low dissolved oxygen strategy to simultaneously improve nutrient removal, mitigate membrane fouling, and reduce energy consumption in an AAO-MBR system: fine bubble or coarse bubble?[J]. Journal of Water Process Engineering, 2024, 57: 104602. |
36 | Shadman P, Shakeri A, Zinadini S. Improving MFC efficiency in power generation and COD removal by using protic ionic liquid in MWCNT-CS-2-aminothiazole-SO3H nanoparticle-infused sulfonated PES[J]. Energy Conversion and Management, 2024, 301: 118049. |
[1] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[2] | 王成秀, 宋大山, 李之辉, 杨潇, 蓝兴英, 高金森, 徐春明. Geldart C类脱硫灰颗粒在环流耦合提升管内稳定流动特性[J]. 化工学报, 2024, 75(4): 1485-1496. |
[3] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[4] | 盖星宇, 岳玉学, 杨春华, 张子龙, 蔡天姿, 张海丰, 王柏林, 李小年. 碳负载Cs和Cu基催化剂用于1,1,2-三氯乙烷的气相脱氯化氢[J]. 化工学报, 2024, 75(2): 575-583. |
[5] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[8] | 王正峰, 谢雨杭, 范永春, 李伟科, 付乾. 活性炭负载Ni-N-C催化剂提升电解碳酸氢盐法拉第效率[J]. 化工学报, 2023, 74(11): 4570-4577. |
[9] | 刘壮壮, 鞠然, 刘崇涛, 宋建超, 李洋洋, 吴厚凯, 李同, 陶秀萍. 电化学膜生物反应器处理污水性能提升策略及研究现状[J]. 化工学报, 2023, 74(11): 4433-4444. |
[10] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[11] | 朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730. |
[12] | 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157. |
[13] | 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. |
[14] | 刘立, 蒋鹏, 王伟, 张同桓, 穆立文, 陆小华, 朱家华. 基于过程模拟和随机森林模型的生物质制氢过程因素分析与预测[J]. 化工学报, 2022, 73(11): 5230-5239. |
[15] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||