化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1635-1646.DOI: 10.11949/0438-1157.20241121
收稿日期:2024-10-10
修回日期:2024-11-25
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
熊伟丽
作者简介:王法正(2001—),男,硕士研究生,6231913050@stu.jiangnan.edu.cn
基金资助:
Fazheng WANG1(
), Lin SUI1, Weili XIONG1,2(
)
Received:2024-10-10
Revised:2024-11-25
Online:2025-04-25
Published:2025-05-12
Contact:
Weili XIONG
摘要:
实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高、低采样率对应的数据分别重构为短期和长期信息,采用时间感知模块将输入信息分解并考虑时间间隔特性,针对质量相关信息占比低的问题,设计非递增启发式衰减函数对短期信息进行加权,组合后获得长短期信息集成特征,降低因多采样率产生的数据缺失影响。其次,引入特征优化模块实现特征二维滤波,跨时间步解析多元时间序列中的时滞信息,获取更有效的质量相关特征。最后,搭建了基于TTPA的长短期记忆网络软测量模型。通过工业青霉素发酵过程和脱丁烷塔过程的应用仿真,验证了所提模型的有效性和优越性。
中图分类号:
王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646.
Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data[J]. CIESC Journal, 2025, 76(4): 1635-1646.
| 符号 | 变量名称 | 采样间隔/min |
|---|---|---|
| RW | 加热/冷却水流速 | 12 |
| VV | 容器体积 | 12 |
| VW | 容器质量 | 12 |
| 废气二氧化碳浓度 | 24 | |
| 废气氧浓度 | 24 | |
| 碳吸收速率 | 12 | |
| 氧吸收速率 | 12 | |
| P | 青霉素浓度 | 60 |
表1 工业青霉素发酵变量描述
Table 1 Variable description of IndPensim
| 符号 | 变量名称 | 采样间隔/min |
|---|---|---|
| RW | 加热/冷却水流速 | 12 |
| VV | 容器体积 | 12 |
| VW | 容器质量 | 12 |
| 废气二氧化碳浓度 | 24 | |
| 废气氧浓度 | 24 | |
| 碳吸收速率 | 12 | |
| 氧吸收速率 | 12 | |
| P | 青霉素浓度 | 60 |
| 所用模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| MLP | 5.55531 | 4.48582 | 4.03364 | 0.69172 |
| RNN | 4.54358 | 3.77206 | 5.97488 | 0.79377 |
| NI[ | 3.52126 | 2.63703 | 1.24222 | 0.87614 |
| MSDF[ | 3.32183 | 2.54239 | 1.53001 | 0.88978 |
| SFA-MLP[ | 2.81958 | 2.05189 | 1.21357 | 0.92058 |
| SA-TLSTM | 2.57029 | 1.87089 | 0.84318 | 0.93401 |
| TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
表2 各模型青霉素浓度预测评价指标
Table 2 The prediction evaluation metrics for penicillin concentration of various models
| 所用模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| MLP | 5.55531 | 4.48582 | 4.03364 | 0.69172 |
| RNN | 4.54358 | 3.77206 | 5.97488 | 0.79377 |
| NI[ | 3.52126 | 2.63703 | 1.24222 | 0.87614 |
| MSDF[ | 3.32183 | 2.54239 | 1.53001 | 0.88978 |
| SFA-MLP[ | 2.81958 | 2.05189 | 1.21357 | 0.92058 |
| SA-TLSTM | 2.57029 | 1.87089 | 0.84318 | 0.93401 |
| TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
| 模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| LSTM | 3.80403 | 3.07299 | 1.71857 | 0.85545 |
| TLSTM | 2.86516 | 2.46471 | 2.02471 | 0.91799 |
| TPA-LSTM | 2.74571 | 2.02671 | 0.68686 | 0.92469 |
| TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
表3 消融实验青霉素浓度预测评价指标
Table 3 The prediction evaluation metrics for penicillin concentration of ablation experiments
| 模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| LSTM | 3.80403 | 3.07299 | 1.71857 | 0.85545 |
| TLSTM | 2.86516 | 2.46471 | 2.02471 | 0.91799 |
| TPA-LSTM | 2.74571 | 2.02671 | 0.68686 | 0.92469 |
| TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
| 子集序号 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| 1 | 1.38802 | 1.07046 | 0.82576 | 0.98066 |
| 2 | 1.26901 | 0.99769 | 0.85675 | 0.98213 |
| 3 | 1.36301 | 1.04380 | 0.43557 | 0.98136 |
| 4 | 1.43175 | 1.07177 | 0.55785 | 0.97943 |
| 5 | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
表4 K折交叉验证青霉素浓度预测评价指标
Table 4 The prediction evaluation metrics for penicillin concentration of K-fold cross-validation
| 子集序号 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| 1 | 1.38802 | 1.07046 | 0.82576 | 0.98066 |
| 2 | 1.26901 | 0.99769 | 0.85675 | 0.98213 |
| 3 | 1.36301 | 1.04380 | 0.43557 | 0.98136 |
| 4 | 1.43175 | 1.07177 | 0.55785 | 0.97943 |
| 5 | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
| 符号 | 变量名称 | 采样间隔/min |
|---|---|---|
| x1 | 塔顶端温度 | 10 |
| x2 | 塔顶端压力 | 10 |
| x3 | 塔顶端回流量 | 20 |
| x4 | 塔顶端出料量 | 20 |
| x5 | 塔板6温度 | 10 |
| x6 | 塔底温度1 | 10 |
| x7 | 塔底温度2 | 10 |
| y | 塔底丁烷含量 | 40 |
表5 脱丁烷塔变量描述
Table 5 Variable description of debutanizer
| 符号 | 变量名称 | 采样间隔/min |
|---|---|---|
| x1 | 塔顶端温度 | 10 |
| x2 | 塔顶端压力 | 10 |
| x3 | 塔顶端回流量 | 20 |
| x4 | 塔顶端出料量 | 20 |
| x5 | 塔板6温度 | 10 |
| x6 | 塔底温度1 | 10 |
| x7 | 塔底温度2 | 10 |
| y | 塔底丁烷含量 | 40 |
| 模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| NI[ | 0.04298 | 0.03221 | 0.12219 | 0.93912 |
| MSDF[ | 0.03623 | 0.02836 | 0.11641 | 0.95685 |
| SFA-MLP[ | 0.03494 | 0.02507 | 0.09652 | 0.95978 |
| TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
表6 多采样率模型在脱丁烷塔数据集的预测评价指标
Table 6 Prediction and evaluation indicators of multirate sampling models in the debutanizer dataset
| 模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| NI[ | 0.04298 | 0.03221 | 0.12219 | 0.93912 |
| MSDF[ | 0.03623 | 0.02836 | 0.11641 | 0.95685 |
| SFA-MLP[ | 0.03494 | 0.02507 | 0.09652 | 0.95978 |
| TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
| 模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| LSTM | 0.04665 | 0.03765 | 0.14688 | 0.92874 |
| TLSTM | 0.03296 | 0.02649 | 0.10634 | 0.96469 |
| TPA-LSTM | 0.03698 | 0.02693 | 0.09838 | 0.95512 |
| TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
表7 脱丁烷塔数据集上的消融实验预测评价指标
Table 7 Predictive evaluation indicators for ablation experiments on the debutanizer dataset
| 模型 | RMSE | MAE | MAPE | R2 |
|---|---|---|---|---|
| LSTM | 0.04665 | 0.03765 | 0.14688 | 0.92874 |
| TLSTM | 0.03296 | 0.02649 | 0.10634 | 0.96469 |
| TPA-LSTM | 0.03698 | 0.02693 | 0.09838 | 0.95512 |
| TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
| 1 | 熊伟丽, 孙文心, 马君霞. 带自相关约束的NARX动态软测量模型[J]. 控制与决策, 2020, 35(4): 816-822. |
| Xiong W L, Sun W X, Ma J X. Autocorrelation constrained NARX dynamic soft sensing model[J]. Control and Decision, 2020, 35(4): 816-822. | |
| 2 | Jiang Y C, Yin S, Dong J W, et al. A review on soft sensors for monitoring, control, and optimization of industrial processes[J]. IEEE Sensors Journal, 2021, 21(11): 12868-12881. |
| 3 | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
| Li H T, Wang Z L, Wang X. Improved conditional Gaussian regression soft sensor based on just-in-time learning[J]. CIESC Journal, 2024, 75(6): 2299-2312. | |
| 4 | 李祥宇, 隋璘, 马君霞, 等. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633. |
| Li X Y, Sui L, Ma J X, et al. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC Journal, 2023, 74(11): 4622-4633. | |
| 5 | Narayanan H, Luna M F, von Stosch M, et al. Bioprocessing in the digital age: the role of process models[J]. Biotechnology Journal, 2020, 15(1): e1900172. |
| 6 | Wang K C, Shang C, Liu L, et al. Dynamic soft sensor development based on convolutional neural networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(26): 11521-11531. |
| 7 | Yin S L, Li Y G, Sun B, et al. Mixed kernel principal component weighted regression based on just-in-time learning for soft sensor modeling[J]. Measurement Science and Technology, 2022, 33(1): 015102. |
| 8 | 程康明, 熊伟丽. 一种自训练框架下的三优选半监督回归算法[J]. 智能系统学报, 2020, 15(3): 568-577. |
| Cheng K M, Xiong W L. Three-optimal semi-supervised regression algorithm under self-training framework[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 568-577. | |
| 9 | Li X H, Ma J W. Domain adaptation based on semi-supervised cross-domain mean discriminative analysis and kernel transfer extreme learning machine[J]. Sensors, 2023, 23(13): 6102. |
| 10 | Ye Z, Cheng X, Ding X, et al. A new unconditionally stable FDTD method based on artificial neural network[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(10): 5759-5767. |
| 11 | Wang J Y, Yao L, Xiong W L. Novel semi-supervised deep probabilistic slow feature extraction for online chemical process soft sensing application[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2517711. |
| 12 | Chai Z, Zhao C H, Huang B. Variational progressive-transfer network for soft sensing of multirate industrial processes[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 12882-12892. |
| 13 | Liu D J, Wang Y L, Liu C L, et al. Multirate-former: an efficient transformer-based hierarchical network for multistep prediction of multirate industrial processes[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 2502313. |
| 14 | Lyu Y T, Zhou L, Cong Y, et al. Multirate mixture probability principal component analysis for process monitoring in multimode processes[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(2): 2027-2038. |
| 15 | Lin B, Recke B, Knudsen J K H, et al. Data-driven soft sensor design with multiple-rate sampled data: a comparative study[C]//2007 European Control Conference (ECC). Kos, Greece: IEEE, 2007: 4740-4745. |
| 16 | Grujić D N. Numerical Hilbert transform algorithm for causal interpolation of functions represented by cubic and exponential splines[J]. IEEE Access, 2021, 9: 136702-136709. |
| 17 | Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773-3783. |
| 18 | He K J, Yang Q, Ji L, et al. Financial time series forecasting with the deep learning ensemble model[J]. Mathematics, 2023, 11(4): 1054. |
| 19 | Zheng J Q, Ma L W, Wu Y, et al. Nonlinear dynamic soft sensor development with a supervised hybrid CNN-LSTM network for industrial processes[J]. ACS Omega, 2022, 7(19): 16653-16664. |
| 20 | Baytas I M, Xiao C, Zhang X, et al. Patient subtyping via time-aware LSTM networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada: ACM, 2017: 65-74. |
| 21 | 曹鲁慧, 秦丰林, 闫中敏. 基于TLSTM的医疗保险欺诈检测[J]. 计算机工程与应用, 2020, 56(21): 237-241. |
| Cao L H, Qin F L, Yan Z M. TLSTM-based medical insurance fraud detection[J]. Computer Engineering and Applications, 2020, 56(21): 237-241. | |
| 22 | 李妍君, 熊伟丽, 徐保国. 一种带过程变量时滞估计的在线软测量建模方法[J]. 信息与控制, 2016, 45(6): 641-646. |
| Li Y J, Xiong W L, Xu B G. An online soft-sensor modeling method including process variable time-delay estimation[J]. Information and Control, 2016, 45(6): 641-646. | |
| 23 | 陈为胜, 李俊民. 非线性时滞大系统自适应神经网络分散控制[J]. 控制与决策, 2006, 21(8): 873-878. |
| Chen W S, Li J M. Adaptive neural network decentralized control for nonlinear time-delay large-scale systems[J]. Control and Decision, 2006, 21(8): 873-878. | |
| 24 | 张晓迪, 蔡云泽, 何星, 等. 基于神经网络的不稳定时滞对象控制[J]. 上海交通大学学报, 2014, 48(7): 1033-1038. |
| Zhang X D, Cai Y Z, He X, et al. Neural network control for unstable processes with time delay[J]. Journal of Shanghai Jiao Tong University, 2014, 48(7): 1033-1038. | |
| 25 | 孙凯, 隋璘, 张芳芳, 等. 基于非负绞杀与长短期记忆神经网络的动态软测量算法[J]. 控制理论与应用, 2023, 40(1): 83-93. |
| Sun K, Sui L, Zhang F F, et al. Dynamic soft sensor algorithm based on nonnegative garrote and long short-term memory neural network[J]. Control Theory & Applications, 2023, 40(1): 83-93. | |
| 26 | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
| Yan L Q, Wang Z L. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418. | |
| 27 | Xia J, Feng Y W, Lu C, et al. LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems[J]. Engineering Failure Analysis, 2021, 125: 105385. |
| 28 | Shih S Y, Sun F K, Lee H Y. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108(8): 1421-1441. |
| 29 | Duan R, Liu J, Zhou J Z, et al. Study on performance evaluation and prediction of francis turbine units considering low-quality data and variable operating conditions[J]. Applied Sciences, 2022, 12(10): 4866. |
| 30 | Ren L, Wang T, Yuanjun L L, et al. A data-driven self-supervised LSTM-DeepFM model for industrial soft sensor[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5859-5869. |
| 31 | Zhang X R, Song C Y, Zhao J, et al. Domain adaptation mixture of Gaussian processes for online soft sensor modeling of multimode processes when sensor degradation occurs[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4654-4664. |
| 32 | Jia M W, Xu D Y, Yang T, et al. Graph convolutional network soft sensor for process quality prediction[J]. Journal of Process Control, 2023, 123: 12-25. |
| 33 | Sun W X, Xiong W L, Chen H T, et al. A novel CVAE-based sequential Monte Carlo framework for dynamic soft sensor applications[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3789-3800. |
| [1] | 徐芳萍, 杨辉, 陈俊, 朱建勇, 陆荣秀. 基于迁移学习与残差注意力卷积网络的稀土元素组分含量软测量[J]. 化工学报, 2025, 76(4): 1647-1660. |
| [2] | 张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679. |
| [3] | 李征, 庄铠泽, 赵东杰, 宋燕星, 王功明. 事件驱动的深度信念网络软测量模型设计方法[J]. 化工学报, 2025, 76(4): 1693-1701. |
| [4] | 张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897. |
| [5] | 周洋, 梁聃, 汪恺, 张艺蓝, 贾立. 基于Alopex进化算法和集成学习的多模态神经网络的污水反渗透过程建模[J]. 化工学报, 2025, 76(4): 1661-1670. |
| [6] | 郑欣雨, 任泽华, 周利, 柴士阳, 吉旭. 基于晶体图卷积神经网络的晶格能回归模型[J]. 化工学报, 2025, 76(3): 1084-1092. |
| [7] | 王大芬, 唐莉丽, 张鑫焱, 聂春雨, 李明珠, 吴菁. 基于时差的多输出tri-training异构软测量建模[J]. 化工学报, 2025, 76(3): 1143-1155. |
| [8] | 王绍吉, 郝矿荣, 陈磊. 基于联邦学习的聚酯纤维酯化过程温度预测研究[J]. 化工学报, 2025, 76(1): 283-295. |
| [9] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
| [10] | 冯海军, 章冰璇, 周健. 图神经网络模型预测和解释离子液体毒性的研究[J]. 化工学报, 2025, 76(1): 93-106. |
| [11] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
| [12] | 郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254. |
| [13] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
| [14] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
| [15] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号