化工学报 ›› 2025, Vol. 76 ›› Issue (1): 93-106.DOI: 10.11949/0438-1157.20240663
收稿日期:
2024-06-14
修回日期:
2024-09-25
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
冯海军
作者简介:
冯海军(1982—),男,博士,讲师,fenghj@sziit.edu.cn
基金资助:
Haijun FENG1(), Bingxuan ZHANG1, Jian ZHOU2
Received:
2024-06-14
Revised:
2024-09-25
Online:
2025-01-25
Published:
2025-02-08
Contact:
Haijun FENG
摘要:
离子液体对环境有潜在毒性,为了解其毒性机制,建立了三种传统机器学习(支持向量机,随机森林,多层感知机)和三种图神经网络(图注意力网络,消息传递神经网络,图卷积模型)模型,预测离子液体对大鼠IPC-81细胞等4种活生物体的毒性。凭借分子结构信息,图卷积模型在4个数据集中的RMSE和MAE均最低,R2均最高,因此,图卷积模型在预测离子液体毒性上更优越。同时,基于图卷积模型,建立毒性解释模型,从数据驱动上来分析原子基团对毒性的贡献。阳离子的芳香环和长烷基链会产生毒性,S+、P+、N+、NH+等原子基团会显著增强离子液体的毒性,而P-、F、B-、C等原子基团会有效降低离子液体的毒性。该发现可为快速筛选和开发更绿色低毒型离子液体提供理论依据。
中图分类号:
冯海军, 章冰璇, 周健. 图神经网络模型预测和解释离子液体毒性的研究[J]. 化工学报, 2025, 76(1): 93-106.
Haijun FENG, Bingxuan ZHANG, Jian ZHOU. Predicting and interpreting the toxicity of ionic liquids using graph neural network[J]. CIESC Journal, 2025, 76(1): 93-106.
数据集 | 评估指标 | SVM | RF | MLP | GAT | MPNN | GCM |
---|---|---|---|---|---|---|---|
大鼠白血病细胞(IPC-81) | RMSE | 0.687 | 0.655 | 0.640 | 0.519 | 0.486 | 0.457 |
MAE | 0.510 | 0.436 | 0.467 | 0.379 | 0.353 | 0.325 | |
R2 | 0.683 | 0.706 | 0.688 | 0.764 | 0.787 | 0.867 | |
对乙酰胆碱酯酶 (AChE) | RMSE | 0.229 | 0.286 | 0.243 | 0.295 | 0.246 | 0.229 |
MAE | 0.128 | 0.170 | 0.156 | 0.210 | 0.171 | 0.184 | |
R2 | 0.814 | 0.746 | 0.825 | 0.716 | 0.822 | 0.830 | |
大肠杆菌 (E. coli) | RMSE | 0.545 | 0.547 | 0.665 | 0.648 | 0.610 | 0.396 |
MAE | 0.396 | 0.407 | 0.462 | 0.471 | 0.417 | 0.324 | |
R2 | 0.832 | 0.811 | 0.775 | 0.760 | 0.773 | 0.880 | |
费氏弧菌 (Vibrio fischeri) | RMSE | 0.739 | 0.724 | 0.658 | 0.732 | 0.696 | 0.591 |
MAE | 0.524 | 0.460 | 0.476 | 0.524 | 0.492 | 0.441 | |
R2 | 0.738 | 0.753 | 0.779 | 0.704 | 0.742 | 0.825 |
表1 不同模型在不同数据集上的毒性预测性能表现
Table 1 Performances of different models on the toxicity prediction of ILs from different datasets
数据集 | 评估指标 | SVM | RF | MLP | GAT | MPNN | GCM |
---|---|---|---|---|---|---|---|
大鼠白血病细胞(IPC-81) | RMSE | 0.687 | 0.655 | 0.640 | 0.519 | 0.486 | 0.457 |
MAE | 0.510 | 0.436 | 0.467 | 0.379 | 0.353 | 0.325 | |
R2 | 0.683 | 0.706 | 0.688 | 0.764 | 0.787 | 0.867 | |
对乙酰胆碱酯酶 (AChE) | RMSE | 0.229 | 0.286 | 0.243 | 0.295 | 0.246 | 0.229 |
MAE | 0.128 | 0.170 | 0.156 | 0.210 | 0.171 | 0.184 | |
R2 | 0.814 | 0.746 | 0.825 | 0.716 | 0.822 | 0.830 | |
大肠杆菌 (E. coli) | RMSE | 0.545 | 0.547 | 0.665 | 0.648 | 0.610 | 0.396 |
MAE | 0.396 | 0.407 | 0.462 | 0.471 | 0.417 | 0.324 | |
R2 | 0.832 | 0.811 | 0.775 | 0.760 | 0.773 | 0.880 | |
费氏弧菌 (Vibrio fischeri) | RMSE | 0.739 | 0.724 | 0.658 | 0.732 | 0.696 | 0.591 |
MAE | 0.524 | 0.460 | 0.476 | 0.524 | 0.492 | 0.441 | |
R2 | 0.738 | 0.753 | 0.779 | 0.704 | 0.742 | 0.825 |
序号 | 原子序号 | 原子基团 | 毒性贡献值Watom |
---|---|---|---|
1 | 0 | CH3 | 0.437 |
2 | 12 | F | -0.320 |
3 | 13 | F | -0.320 |
4 | 14 | F | -0.320 |
5 | 15 | F | -0.320 |
6 | 10 | F | -0.320 |
7 | 8 | CH | 0.440 |
8 | 7 | CH | 0.561 |
9 | 9 | CH | 0.622 |
10 | 11 | P- | 0.413 |
11 | 1 | CH2 | -0.017 |
12 | 16 | F | -0.320 |
13 | 2 | CH2 | 0.605 |
14 | 3 | CH2 | 0.643 |
15 | 4 | N+ | 1.058 |
16 | 5 | CH | 0.622 |
17 | 6 | CH | 0.440 |
表2 大鼠白血病细胞数据集的离子液体IL15中各原子基团对其毒性的贡献值
Table 2 Atomic contribution values to the toxicity of IL15 in IPC-81 dataset
序号 | 原子序号 | 原子基团 | 毒性贡献值Watom |
---|---|---|---|
1 | 0 | CH3 | 0.437 |
2 | 12 | F | -0.320 |
3 | 13 | F | -0.320 |
4 | 14 | F | -0.320 |
5 | 15 | F | -0.320 |
6 | 10 | F | -0.320 |
7 | 8 | CH | 0.440 |
8 | 7 | CH | 0.561 |
9 | 9 | CH | 0.622 |
10 | 11 | P- | 0.413 |
11 | 1 | CH2 | -0.017 |
12 | 16 | F | -0.320 |
13 | 2 | CH2 | 0.605 |
14 | 3 | CH2 | 0.643 |
15 | 4 | N+ | 1.058 |
16 | 5 | CH | 0.622 |
17 | 6 | CH | 0.440 |
数据集 | 正贡献原子基团 | 毒性贡献正权重 | 负贡献原子基团 | 毒性贡献负权重 |
---|---|---|---|---|
大鼠白血病细胞(IPC-81) | S+ | 2.003 | P- | -0.960 |
N+ | 0.975 | C | -0.649 | |
NH+ | 0.937 | CH2 | -0.562 | |
Cl- | 0.612 | B- | -0.545 | |
NH2 | 0.595 | P+ | -0.432 | |
对乙酰胆碱酯酶(AChE) | P+ | 1.985 | F | -0.427 |
N+ | 0.974 | P | -0.366 | |
CH | 0.659 | C | -0.362 | |
C | 0.604 | S | -0.289 | |
S | 0.589 | N | -0.284 | |
大肠杆菌(E. coli) | N+ | 1.293 | B- | -0.722 |
S | 0.858 | P- | -0.644 | |
CH3 | 0.823 | N+ | -0.399 | |
P+ | 0.819 | C | -0.399 | |
O- | 0.570 | S | -0.385 | |
费氏弧菌(Vibrio fischeri) | NH+ | 1.604 | P- | -1.206 |
N- | 1.598 | N | -0.930 | |
NH | 1.306 | S | -0.766 | |
N+ | 1.154 | C | -0.759 | |
P | 0.907 | CH2 | -0.594 |
表3 4个数据集中正负毒性贡献最高的前5个原子基团的权重
Table 3 Top 5 atomic weights for both positive and negative contributions in 4 datasets
数据集 | 正贡献原子基团 | 毒性贡献正权重 | 负贡献原子基团 | 毒性贡献负权重 |
---|---|---|---|---|
大鼠白血病细胞(IPC-81) | S+ | 2.003 | P- | -0.960 |
N+ | 0.975 | C | -0.649 | |
NH+ | 0.937 | CH2 | -0.562 | |
Cl- | 0.612 | B- | -0.545 | |
NH2 | 0.595 | P+ | -0.432 | |
对乙酰胆碱酯酶(AChE) | P+ | 1.985 | F | -0.427 |
N+ | 0.974 | P | -0.366 | |
CH | 0.659 | C | -0.362 | |
C | 0.604 | S | -0.289 | |
S | 0.589 | N | -0.284 | |
大肠杆菌(E. coli) | N+ | 1.293 | B- | -0.722 |
S | 0.858 | P- | -0.644 | |
CH3 | 0.823 | N+ | -0.399 | |
P+ | 0.819 | C | -0.399 | |
O- | 0.570 | S | -0.385 | |
费氏弧菌(Vibrio fischeri) | NH+ | 1.604 | P- | -1.206 |
N- | 1.598 | N | -0.930 | |
NH | 1.306 | S | -0.766 | |
N+ | 1.154 | C | -0.759 | |
P | 0.907 | CH2 | -0.594 |
1 | Zhu M Y, Yang Y. Poly(ionic liquid)s: an emerging platform for green chemistry[J]. Green Chemistry, 2024, 26(9): 5022-5102. |
2 | 张璐, 刘杰, 娄生辉, 等. 季膦萘磺酸盐离子液体与甲基膦酸二甲酯协同阻燃环氧树脂[J]. 高等学校化学学报, 2024, 45(4): 17-26. |
Zhang L, Liu J, Lou S H, et al. Synergistic flame-retardant epoxy resin using quaternary phosphate naphthalene sulfonate ionic liquid and dimethyl methylphosphonate[J]. Chemical Journal of Chinese Universities, 2024, 45(4): 17-26. | |
3 | Probert P M, Leitch A C, Dunn M P, et al. Identification of a xenobiotic as a potential environmental trigger in primary biliary cholangitis[J]. Journal of Hepatology, 2018, 69(5): 1123-1135. |
4 | Zhang C, Zhu L S, Wang J H, et al. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 140: 235-240. |
5 | Jeremias G, Jesus F, Ventura S P M, et al. New insights on the effects of ionic liquid structural changes at the gene expression level: molecular mechanisms of toxicity in daphnia Magna[J]. Journal of Hazardous Materials, 2021, 409: 124517. |
6 | Jakubowska A, Grabińska-Sota E. Study of the toxicity of five quaternary ammonium ionic liquids to aquatic organisms[J]. Desalination and Water Treatment, 2018, 117: 202-210. |
7 | Makarov D M, Fadeeva Y A, Safonova E A, et al. Predictive modeling of antibacterial activity of ionic liquids by machine learning methods[J]. Computational Biology and Chemistry, 2022, 101: 107775. |
8 | Feng H J, Qin L L, Zhang B X, et al. Prediction and interpretability of melting points of ionic liquids using graph neural networks[J]. ACS Omega, 2024, 9(14): 16016-16025. |
9 | Venkatraman V, Evjen S, Knuutila H K, et al. Predicting ionic liquid melting points using machine learning[J]. Journal of Molecular Liquids, 2018, 264: 318-326. |
10 | Feng H J, Qin W, Hu G W, et al. Intelligent prediction of nitrous oxide capture in designable ionic liquids[J]. Applied Sciences, 2023, 13(12): 6900. |
11 | Feng H J, Zhang P G, Qin W, et al. Estimation of solubility of acid gases in ionic liquids using different machine learning methods[J]. Journal of Molecular Liquids, 2022, 349: 118413. |
12 | Jian Y, Wang Y Y, Barati Farimani A. Predicting CO2 absorption in ionic liquids with molecular descriptors and explainable graph neural networks[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(50): 16681-16691. |
13 | Makarov D M, Fadeeva Y A, Golubev V A, et al. Designing deep eutectic solvents for efficient CO2 capture: a data-driven screening approach[J]. Separation and Purification Technology, 2023, 325: 124614. |
14 | Song C C, Wang C Y, Fang F, et al. Large-scale screening for high conductivity ionic liquids via machine learning algorithm utilizing graph neural network-based features[J]. Journal of Chemical & Engineering Data, DOI: 10.1021/acs.jced.3c00709 . |
15 | 肖拥君, 时兆翀, 万仁, 等. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
Xiao Y J, Shi Z C, Wan R, et al. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks[J]. CIESC Journal, 2024, 75(2): 429-438. | |
16 | 曾少娟, 孙雪琦, 白银鸽, 等. CO2捕集分离的功能离子液体及材料研究进展[J]. 化学学报, 2023, 81(6): 627-645. |
Zeng S J, Sun X Q, Bai Y G, et al. Research progress of CO2 capture and separation by functionalized ionic liquids and materials[J]. Acta Chimica Sinica, 2023, 81(6): 627-645. | |
17 | Abdullah N H, Zaini D, Lal B. Prediction of ionic liquids toxicity using machine learning models for application to gas hydrate[J]. Process Safety Progress, 2024, 43(S1): S199-S212. |
18 | 赵永升, 黄莺, 赵继红, 等. 基于QSAR方法的离子液体毒性预测[J]. 化工学报, 2014, 65(5): 1616-1621. |
Zhao Y S, Huang Y, Zhao J H, et al. QSAR for predicting toxicity of imidazolium-based ionic liquids[J]. CIESC Journal, 2014, 65(5): 1616-1621. | |
19 | Ma S Y, Lv M, Zhang X Y, et al. Computational study of the effects of cations and anions to the cytotoxicity of diverse ionic liquids by supervised machine learning[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 144: 138-147. |
20 | Sosnowska A, Grzonkowska M, Puzyn T. Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: the predictive ability[J]. Journal of Molecular Liquids, 2017, 231: 333-340. |
21 | Zhao Y S, Zhao J H, Huang Y, et al. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method[J]. Journal of Hazardous Materials, 2014, 278: 320-329. |
22 | Cao L D, Zhu P, Zhao Y S, et al. Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids[J]. Journal of Hazardous Materials, 2018, 352: 17-26. |
23 | Yan J C, Liu G H, Chen H L, et al. ILTox: a curated toxicity database for machine learning and design of environmentally friendly ionic liquids[J]. Environmental Science & Technology Letters, 2023, 10(11): 983-988. |
24 | Yan J C, Yan X L, Hu S, et al. Comprehensive interrogation on acetylcholinesterase inhibition by ionic liquids using machine learning and molecular modeling[J]. Environmental Science & Technology, 2021, 55(21): 14720-14731. |
25 | Ahmad W, Tayara H, Chong K T. Attention-based graph neural network for molecular solubility prediction[J]. ACS Omega, 2023, 8(3): 3236-3244. |
26 | Rittig J G, Ben Hicham K, Schweidtmann A M, et al. Graph neural networks for temperature-dependent activity coefficient prediction of solutes in ionic liquids[J]. Computers & Chemical Engineering, 2023, 171: 108153. |
27 | Atz K, Grisoni F, Schneider G. Geometric deep learning on molecular representations[J]. Nature Machine Intelligence, 2021, 3: 1023-1032. |
28 | Wang Y Y, Magar R, Liang C, et al. Improving molecular contrastive learning via faulty negative mitigation and decomposed fragment contrast[J]. Journal of Chemical Information and Modeling, 2022, 62(11): 2713-2725. |
29 | Wang Y Y, Wang J R, Cao Z L, et al. Molecular contrastive learning of representations via graph neural networks[J]. Nature Machine Intelligence, 2022, 4: 279-287. |
30 | Karamad M, Magar R, Shi Y T, et al. Orbital graph convolutional neural network for material property prediction[J]. Physical Review Materials, 2020, 4(9): 093801. |
31 | Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints[J]. Advances in Neural Information Processing Systems, 2015, 28: 2224-2232. |
32 | Kearnes S, McCloskey K, Berndl M, et al. Molecular graph convolutions: moving beyond fingerprints[J]. Journal of Computer-Aided Molecular Design, 2016, 30(8): 595-608. |
33 | Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[EB/OL]. 2017. . |
34 | Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[EB/OL]. 2017. . |
35 | Fan R, Chang K, Hsieh C, et al. Liblinear: a library for large linear classification[J]. The Journal of Machine Learning Research, 2008, 9: 1871-1874. |
36 | Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32. |
37 | Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42. |
38 | Hinton G E. Connectionist learning procedures[M]//Mechine Learning: An Artificial Intelligence Approach Volume Ⅲ. Elsevier, 1990: 555-610. |
39 | Ramsundar B, Eastman P, Walters P, et al. Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More[M]. Sebastopol, CA: O'Reilly Media, 2019. |
40 | Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python[J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830. |
41 | Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences from the scikit-learn project[EB/OL]. 2013. . |
42 | Weyhing-Zerrer N, Gundolf T, Kalb R, et al. Predictability of ionic liquid toxicity from a SAR study on different systematic levels of pathogenic bacteria[J]. Ecotoxicology and Environmental Safety, 2017, 139: 394-403. |
[1] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
[2] | 贾艳萍, 马艳菊, 管文昕, 杨彬, 张健, 张兰河. 响应面法优化Fe0/H2O2体系降解染料废水的工艺条件及机理[J]. 化工学报, 2025, 76(1): 348-362. |
[3] | 王绍吉, 郝矿荣, 陈磊. 基于联邦学习的聚酯纤维酯化过程温度预测研究[J]. 化工学报, 2025, 76(1): 283-295. |
[4] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
[5] | 邱知, 谭明. 聚离子液体膜的制备及其在低钠高钾健康酱油中的应用[J]. 化工学报, 2024, 75(S1): 244-250. |
[6] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
[7] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[8] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[9] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
[10] | 郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254. |
[11] | 李季, 王建林, 何睿, 周新杰, 王雯, 赵利强. 基于DBSVDD-RVR的多模态间歇过程质量变量在线软测量[J]. 化工学报, 2024, 75(9): 3231-3241. |
[12] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
[13] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[14] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[15] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||