化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2802-2812.DOI: 10.11949/0438-1157.20241203

• 过程系统工程 • 上一篇    下一篇

可再生能源发电制氢与炼油企业氢气网络耦合系统的多周期调度优化

王智超(), 刘冬妹, 熊敏, 周利(), 吉旭, 党亚固   

  1. 四川大学化学工程学院,四川 成都 610065
  • 收稿日期:2024-10-30 修回日期:2024-12-01 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 周利
  • 作者简介:王智超(1999—),男,硕士研究生,1694196967@qq.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(22108178);国家自然科学基金青年科学基金项目(22478260)

Optimization of multi-period scheduling for coupling system of hydrogen production from renewable energy and refinery hydrogen network

Zhichao WANG(), Dongmei LIU, Min XIONG, Li ZHOU(), Xu JI, Yagu DANG   

  1. College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2024-10-30 Revised:2024-12-01 Online:2025-06-25 Published:2025-07-09
  • Contact: Li ZHOU

摘要:

将可再生能源制氢集成于炼厂氢气系统有助于绿色低碳生产并降低运营成本,但其波动性可能影响炼油企业的氢气供应稳定性。为解决这一问题,建立数学规划模型优化制氢调度方案尤为重要,以确保氢气网络的稳定运行。对氢气管道、管网以及压缩机等操作单元进行建模,同时以最小化运行成本为目标,构建了一个包含互补约束的数学规划模型,通过求解模型得到最优制氢调度生产方案。通过对比分析,优化调度模型的生产方案在一个生产周期(24 h)内最多可以减少灰氢产量1373 kg,对应约减少系统CO₂排放量0.9%;对于系统运行成本,模型得到结果最多可以减少3930 USD,约节省总成本的2.0%。结果表明,该生产方案即使在可再生能源供应波动的情况下也能够确保氢气系统的稳定运行,满足耗氢装置的需要,同时保持管网压力在安全区间内,此外还能在此基础上有效控制优化运行成本,提升经济效益,对于推动炼油行业向更加绿色、高效的生产模式转型具有重要意义。

关键词: 绿氢, 氢气网络, 数学规划, 互补约束, 优化

Abstract:

Integrating renewable energy-based hydrogen production into refinery hydrogen systems contributes to green and low-carbon production while reducing operational costs. However, the inherent volatility of renewable energy can affect the stability of hydrogen supply in refineries. To address this issue, a mathematical optimization model is developed to optimize hydrogen production scheduling, ensuring stable hydrogen network operation. Operational units such as hydrogen pipelines, networks, and compressors are modeled with the aim of minimizing operational costs. A mathematical programming model with complementary constraints is constructed, and the optimal hydrogen production schedule is obtained by solving the model. Through analysis, the production plan of the optimized scheduling model can reduce the gray hydrogen output by up to 1373 kg within a production cycle (24 h), corresponding to a reduction of approximately 0.9% in system CO₂ emissions. As for the system operating costs, the model's results show that the maximum reduction can be 3930 USD, which is about 2.0% of the total cost. The results show that even in the case of fluctuations in renewable energy supply, this production plan can ensure the stable operation of the hydrogen system, meet the needs of hydrogen-consuming devices, and keep the pipeline pressure within a safe range. Moreover, this approach effectively controls operational costs and enhances economic efficiency. This approach is of great significance in promoting the transition of the refinery industry toward greener and more efficient production modes.

Key words: green hydrogen, hydrogen networks, mathematical planning, complementarity constraints, optimization

中图分类号: