化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2626-2637.DOI: 10.11949/0438-1157.20241128
收稿日期:2024-10-12
修回日期:2024-11-22
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
王斯民
作者简介:向晓彤(2002—),男,硕士研究生,xiangxiaotong27@stu.xjtu.edu.cn
基金资助:
Xiaotong XIANG(
), Xudong DUAN, Simin WANG(
)
Received:2024-10-12
Revised:2024-11-22
Online:2025-06-25
Published:2025-07-09
Contact:
Simin WANG
摘要:
为了提高电解槽性能,对质子交换膜(PEM)电解槽进行数学建模,分析了流道高度、流道宽度、水流量对电解槽性能的影响规律,然后基于标准二次多项式响应面模型与多目标遗传算法模型,优化了PEM电解槽流道结构。研究结果表明:随着流道高度或者流道宽度增大,阳极流道压降降低,气液扩散层内氧气体积分数增大,电流密度减小,电解能耗增大;增大水流量将增大流道压降,改善氧气聚集现象;通过多目标优化,优化流道结构相比于初始流道结构,压降减小9.84%,气液扩散层内氧气体积分数降低0.74%,电流密度提升6.77 A/m2,电解能耗降低0.03 W·h/m3(标准状况)。
中图分类号:
向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637.
Xiaotong XIANG, Xudong DUAN, Simin WANG. Research on performance of PEM electrolyzer driven by multi-objective optimization[J]. CIESC Journal, 2025, 76(6): 2626-2637.
| 结构参数 | 数值 |
|---|---|
| 电解槽长度L/mm | 52[ |
| 电解槽宽度W1/mm | 3[ |
| 双极板高度H1/mm | 3 |
| 流道高度H2/mm | 1[ |
| 流道宽度W2/mm | 1[ |
| 气液扩散层厚度H3/mm | 0.3[ |
| 催化剂层厚度H4/mm | 0.005[ |
| 质子交换膜厚度H5/mm | 0.127[ |
| 电解活性面积A/m2 | 1.56×10-4 |
表1 PEM电解槽结构参数
Table 1 Structural parameters of PEM electrolyzer
| 结构参数 | 数值 |
|---|---|
| 电解槽长度L/mm | 52[ |
| 电解槽宽度W1/mm | 3[ |
| 双极板高度H1/mm | 3 |
| 流道高度H2/mm | 1[ |
| 流道宽度W2/mm | 1[ |
| 气液扩散层厚度H3/mm | 0.3[ |
| 催化剂层厚度H4/mm | 0.005[ |
| 质子交换膜厚度H5/mm | 0.127[ |
| 电解活性面积A/m2 | 1.56×10-4 |
| 物理参数 | 数值 |
|---|---|
| 液态水温度T/K | 333.15[ |
| 液态水质量流量 | 4×10-4[ |
| 阴阳极流道出口背压P/Pa | 101325[ |
| 操作压力 | 101325[ |
| 电解电压 | 1.73 |
| 开路电压/V | 1.2 |
| 阳极参考交换电流密度 | 1×10-6[ |
| 阴极参考交换电流密度 | 100 |
| 阳极活化能 | 62836[ |
| 阴极活化能 | 24359[ |
| 电荷转移系数 | 0.5[ |
表2 PEM电解槽物理参数
Table 2 Physical parameters of PEM electrolyzer
| 物理参数 | 数值 |
|---|---|
| 液态水温度T/K | 333.15[ |
| 液态水质量流量 | 4×10-4[ |
| 阴阳极流道出口背压P/Pa | 101325[ |
| 操作压力 | 101325[ |
| 电解电压 | 1.73 |
| 开路电压/V | 1.2 |
| 阳极参考交换电流密度 | 1×10-6[ |
| 阴极参考交换电流密度 | 100 |
| 阳极活化能 | 62836[ |
| 阴极活化能 | 24359[ |
| 电荷转移系数 | 0.5[ |
| 项目 | 流道高度H2/mm | 流道宽度W2/mm | 水流量Qm /(kg/s) | 压降ΔP/Pa | 体积分数x/% | 电流密度I/(A/m2) | 能耗SEC/(W·h/m3) |
|---|---|---|---|---|---|---|---|
| 理论最优解1 | 1.4602 | 0.7642 | 3.0259×10-4 | 409.40 | 80.41 | 9728.20 | 3806.80 |
| 理论最优解2 | 1.4679 | 0.7644 | 3.0390×10-4 | 408.64 | 80.42 | 9728.10 | 3806.80 |
| 理论最优解3 | 1.4650 | 0.7784 | 3.1595×10-4 | 408.59 | 80.40 | 9726.90 | 3806.80 |
| 预测响应解 | 1.50 | 0.80 | 3×10-4 | 351.18 | 81.31 | 9724.30 | 3806.80 |
| 实际计算解 | 1.50 | 0.80 | 3×10-4 | 328.84 | 81.74 | 9724.64 | 3806.79 |
| 相对误差/% | — | — | — | 6.36 | 0.53 | 0.0035 | 0.00026 |
表3 优化结果与验证
Table 3 Optimization results and verification
| 项目 | 流道高度H2/mm | 流道宽度W2/mm | 水流量Qm /(kg/s) | 压降ΔP/Pa | 体积分数x/% | 电流密度I/(A/m2) | 能耗SEC/(W·h/m3) |
|---|---|---|---|---|---|---|---|
| 理论最优解1 | 1.4602 | 0.7642 | 3.0259×10-4 | 409.40 | 80.41 | 9728.20 | 3806.80 |
| 理论最优解2 | 1.4679 | 0.7644 | 3.0390×10-4 | 408.64 | 80.42 | 9728.10 | 3806.80 |
| 理论最优解3 | 1.4650 | 0.7784 | 3.1595×10-4 | 408.59 | 80.40 | 9726.90 | 3806.80 |
| 预测响应解 | 1.50 | 0.80 | 3×10-4 | 351.18 | 81.31 | 9724.30 | 3806.80 |
| 实际计算解 | 1.50 | 0.80 | 3×10-4 | 328.84 | 81.74 | 9724.64 | 3806.79 |
| 相对误差/% | — | — | — | 6.36 | 0.53 | 0.0035 | 0.00026 |
| [1] | 张翛然, 王亚会, 聂铭歧, 等. 碳中和背景下海外氢能源发展新思路及对我国的启示[J]. 新能源科技, 2023(1): 18-22. |
| Zhang X R, Wang Y H, Nie M Q, et al. New ideas of overseas hydrogen energy development in the context of carbon neutrality and its enlightenment to China[J]. New Energy Technology, 2023(1): 18-22. | |
| [2] | 侯梅芳, 潘松圻, 刘翰林. 世界能源转型大势与中国油气可持续发展战略[J]. 天然气工业, 2021, 41(12): 9-16. |
| Hou M F, Pan S Q, Liu H L. World energy trend and China's oil and gas sustainable development strategies[J]. Natural Gas Industry, 2021, 41(12): 9-16. | |
| [3] | 杜祥琬. “十三五”中国能源低碳转型的关键期[J]. 中国电力, 2017, 50(2): 1-4. |
| Du X W. The 13th five-year period: a key period of China's energy low-carbon transition[J]. Electric Power, 2017, 50(2): 1-4. | |
| [4] | 杨洋. 氢气制备技术研究进展及应用前景[J]. 中国高新科技, 2023(16): 20-22. |
| Yang Y. Research progress of hydrogen preparation technology and application prospect[J]. China High-Tech, 2023(16): 20-22. | |
| [5] | 万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. |
| Wan Y M, Xiong Y L, Wang X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. | |
| [6] | 朱彤. 我国氢能产业发展的特点、问题与定位[J]. 中国发展观察, 2021(S3): 112-117. |
| Zhu T. Characteristics, problems and orientation of the development of hydrogen energy industry in China[J]. China Development Observation, 2021(S3): 112-117. | |
| [7] | 魏凤, 任小波, 高林, 等. 碳中和目标下美国氢能战略转型及特征分析[J]. 中国科学院院刊, 2021, 36(9): 1049-1057. |
| Wei F, Ren X B, Gao L, et al. Analysis on transformation and characteristics of American hydrogen energy strategy under carbon neutralization goal[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1049-1057. | |
| [8] | 李子烨, 劳力云, 王谦. 制氢技术发展现状及新技术的应用进展[J]. 现代化工, 2021, 41(7): 86-89. |
| Li Z Y, Lao L Y, Wang Q. Development status of hydrogen production technologies and application advances of new technologies[J]. Modern Chemical Industry, 2021, 41(7): 86-89. | |
| [9] | 何青, 孟照鑫, 沈轶, 等. “双碳” 目标下我国氢能政策分析与思考[J]. 热力发电, 2021, 50(11): 27-36. |
| He Q, Meng Z X, Shen Y, et al. Analysis and thinking of hydrogen energy policies in China under “double carbon” target[J]. Thermal Power Generation, 2021, 50(11): 27-36. | |
| [10] | 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
| Hu B, Xu L J, He S, et al. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. | |
| [11] | 瞿国华. 我国氢能产业发展和氢资源探讨[J]. 当代石油石化, 2020, 28(4): 4-9. |
| Qu G H. China's hydrogen energy industry development and hydrogen resources[J]. Petroleum & Petrochemical Today, 2020, 28(4): 4-9. | |
| [12] | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
| Guo B W, Luo D, Zhou H J. Research progress of hydrogen production technology and catalyst from renewable energy electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
| [13] | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
| Zhao Y Z, Meng B, Chen L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
| [14] | 孙浩, 吴维宁, 陈丽杰, 等. 新能源电解水制氢技术发展研究综述[J/OL]. 电源学报, . |
| Sun H, Wu W N, Chen L J, et al. Review on the development of new energy water electrolysis technology for hydrogen production[J/OL]. Journal of Power Supply, . | |
| [15] | 刘芸. 绿色能源氢能及其电解水制氢技术进展[J]. 电源技术, 2012, 36(10): 1579-1581. |
| Liu Y. Progress of green energy hydrogen energy and technology of hydrogen production by water electrolysis[J]. Chinese Journal of Power Sources, 2012, 36(10): 1579-1581. | |
| [16] | 张显峰, 唐乾, 刘伟, 等. PEM电解制氢技术问题及现状分析[J]. 山东化工, 2024, 53(4): 105-109. |
| Zhang X F, Tang Q, Liu W, et al. Technical problems and current situation analysis of PEM electrolysis hydrogen production[J]. Shandong Chemical Industry, 2024, 53(4): 105-109. | |
| [17] | Yuan S, Zhao C F, Cai X Y, et al. Bubble evolution and transport in PEM water electrolysis: mechanism, impact, and management[J]. Progress in Energy and Combustion Science, 2023, 96: 101075. |
| [18] | Nie J H, Chen Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3183-3197. |
| [19] | Nie J H, Chen Y, Cohen S, et al. Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell[J]. International Journal of Thermal Sciences, 2009, 48(10): 1914-1922. |
| [20] | Lin R, Lu Y, Xu J, et al. Investigation on performance of proton exchange membrane electrolyzer with different flow field structures[J]. Applied Energy, 2022, 326: 120011. |
| [21] | Ruiz D D, Sasmito A P, Shamim T. Numerical investigation of the high temperature PEM electrolyzer: effect of flow channel configurations[J]. ECS Transactions, 2013, 58(2): 99-112. |
| [22] | Su X, Zhang Q, Xu L J, et al. A novel combined flow field design and performance analysis of proton exchange membrane electrolysis cell[J]. International Journal of Hydrogen Energy, 2024, 61: 444-459. |
| [23] | Toghyani S, Afshari E, Baniasadi E. Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells[J]. Electrochimica Acta, 2018, 290: 506-519. |
| [24] | 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
| He Z X, Shi C X, Chen Z C, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. | |
| [25] | 穆瑞, 马晓锋, 翁武斌, 等. 螺旋流场设计对PEM电解槽性能影响的模拟研究[J]. 新能源进展, 2023, 11(4): 295-302. |
| Mu R, Ma X F, Weng W B, et al. Simulation study on the effect of spiral flow field design on the performance of PEM electrolytic cells[J]. Advances in New and Renewable Energy, 2023, 11(4): 295-302. | |
| [26] | Xie Y, Zhang L Y, Ying P J, et al. Intensified field-effect of hydrogen evolution reaction[J]. Progress in Chemistry, 2021, 33(9): 1571-1585. |
| [27] | Olesen A C, Rømer C, Kær S K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell[J]. International Journal of Hydrogen Energy, 2016, 41(1): 52-68. |
| [28] | Su X, Xu L J, Zhu D, et al. Electrochemical performance study of proton exchange membrane electrolyzer considering the effect of bubble coverage[J]. International Journal of Hydrogen Energy, 2023, 48(70): 27079-27094. |
| [29] | 王华, 马晓锋, 何勇, 等. 流场结构对PEM电解槽性能影响模拟[J]. 洁净煤技术, 2023, 29(3): 78-84. |
| Wang H, Ma X F, He Y, et al. Simulation of the effect of flow channel structure on the performance of PEM electrolyzer[J]. Clean Coal Technology, 2023, 29(3): 78-84. | |
| [30] | Su C, Chen Z D, Zhan H W, et al. Optimal design and performance analysis of anode flow channels in proton exchange membrane water electrolyzers[J]. Applied Thermal Engineering, 2024, 248: 123201. |
| [31] | 刘洋, 邱殿凯, 彭林法, 等. 电解制氢设备性能优化及流道设计[J]. 机械设计与研究, 2023, 39(5): 142-146. |
| Liu Y, Qiu D K, Peng L F, et al. Study on performance enhancement and flow channel design of electrolytic hydrogen production equipment[J]. Machine Design & Research, 2023, 39(5): 142-146. | |
| [32] | Chen J X, Lv H, Shen X J, et al. Multi-objective optimization design and sensitivity analysis of proton exchange membrane electrolytic cell[J]. Journal of Cleaner Production, 2024, 434: 140045. |
| [33] | Ito H, Maeda T, Nakano A, et al. Effect of flow regime of circulating water on a proton exchange membrane electrolyzer[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9550-9560. |
| [34] | Ito H, Maeda T, Nakano A, et al. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer[J]. Electrochimica Acta, 2013, 100: 242-248. |
| [35] | Xu Y F, Zhang G B, Wu L Z, et al. A 3-D multiphase model of proton exchange membrane electrolyzer based on open-source CFD[J]. Digital Chemical Engineering, 2021, 1: 100004. |
| [36] | Wang X Y, Wang Z M, Feng Y C, et al. Three-dimensional multiphase modeling of a proton exchange membrane electrolysis cell with a new interdigitated-jet hole flow field[J]. Science China Technological Sciences, 2022, 65(5): 1179-1192. |
| [37] | Wang Z M, Xu C, Wang X Y, et al. Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell[J]. Science China Technological Sciences, 2021, 64(7): 1555-1566. |
| [38] | 闫文标. 基于FLUENT三种多相流模型的选择及应用说明[J]. 云南化工, 2020, 47(4): 43-44. |
| Yan W B. Selection and application of three multiphase flow models based on FLUENT[J]. Yunnan Chemical Technology, 2020, 47(4): 43-44. | |
| [39] | 王斯民, 孙利娟, 宋晨, 等. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362. |
| Wang S M, Sun L J, Song C, et al. Multi-objective optimization on shell-side performance of rod-baffle heat exchangers with twisted oval tubes[J]. CIESC Journal, 2019, 70(9): 3353-3362. | |
| [40] | Kim H, Park M, Lee K S. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2596-2609. |
| [1] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [2] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [3] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [4] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [5] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [6] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [7] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [8] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [9] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [10] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [11] | 张豪豪, 郭莉, 李馨怡, 陈锦溢, 华超, 陆平. 隔板精馏塔的优化设计及动态控制研究进展[J]. 化工学报, 2025, 76(6): 2434-2450. |
| [12] | 包兴, 郭雪岩. 圆柱颗粒结构修饰对填充床内流动和换热特性的影响[J]. 化工学报, 2025, 76(6): 2603-2615. |
| [13] | 李长宇, 曾强, 肖杰, 张阳杰, 张政, 林元华. PVDF对LATP基固态电解质膜界面修饰研究[J]. 化工学报, 2025, 76(6): 2974-2982. |
| [14] | 王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732. |
| [15] | 郭江悦, 常守金, 胡海涛. 水平管内甲醇流动冷凝数值模拟研究[J]. 化工学报, 2025, 76(6): 2580-2588. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号