化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3651-3658.DOI: 10.11949/0438-1157.20241353
李秋英1(
), 花亦怀1, 程昊1, 张涵玮2, 刘文睿2, 白昊川2, 王凯2(
), 邱利民2
收稿日期:2024-11-25
修回日期:2025-02-13
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
王凯
作者简介:李秋英(1980—),女,博士,高级工程师,liqy18@cnooc.com.cn
基金资助:
Qiuying LI1(
), Yihuai HUA1, Hao CHENG1, Hanwei ZHANG2, Wenrui LIU2, Haochuan BAI2, Kai WANG2(
), Limin QIU2
Received:2024-11-25
Revised:2025-02-13
Online:2025-07-25
Published:2025-08-13
Contact:
Kai WANG
摘要:
针对常规氢液化流程存在的高能耗和压缩机组高温余热未利用的问题,基于液氮预冷的Claude氢液化系统提出一种耦合有机朗肯循环的高效流程,利用Aspen Hysys进行稳态模拟并开展能量分析和㶲分析。结果表明,该流程可以实现5 t/d的液氢产率,相比无ORC的常规系统,净功耗从1803.97 kW显著降低至1701.39 kW,比能耗为8.17 kWh/kg,㶲效率为42.14%。
中图分类号:
李秋英, 花亦怀, 程昊, 张涵玮, 刘文睿, 白昊川, 王凯, 邱利民. 集成ORC系统的高效氢液化流程设计研究[J]. 化工学报, 2025, 76(7): 3651-3658.
Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system[J]. CIESC Journal, 2025, 76(7): 3651-3658.
| 设备 | 㶲效率公式 | 公式 |
|---|---|---|
| 压缩机 | (5) | |
| 膨胀机 | (6) | |
| 泵 | (7) | |
| 换热器 | (8) | |
| 节流阀 | (9) |
表1 氢液化流程中主要部件㶲效率的计算公式
Table 1 The exergy efficiency calculation formulas of the main components in the processes
| 设备 | 㶲效率公式 | 公式 |
|---|---|---|
| 压缩机 | (5) | |
| 膨胀机 | (6) | |
| 泵 | (7) | |
| 换热器 | (8) | |
| 节流阀 | (9) |
| 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) | 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) |
|---|---|---|---|---|---|---|---|---|---|
| 原料氢液化系统 | H0 | 300 | 2100 | 0.069 | 氢Claude制冷循环系统 | F19 | 79.31 | 800 | 0.580 |
| H1 | 170 | 2100 | 0.069 | F20 | 96.98 | 800 | 0.580 | ||
| H2 | 80 | 2100 | 0.069 | F21 | 198.1 | 800 | 0.580 | ||
| H3 | 65 | 2100 | 0.069 | F22 | 50 | 1800 | 0.598 | ||
| H4 | 50 | 2100 | 0.069 | F23 | 40 | 1800 | 0.598 | ||
| H5 | 40 | 2100 | 0.069 | F24 | 30 | 1800 | 0.598 | ||
| H6 | 30 | 2100 | 0.069 | F25 | 24.58 | 300 | 0.598 | ||
| H7 | 26 | 2100 | 0.069 | F26 | 24.58 | 300 | 0.598 | ||
| H8 | 21.15 | 130 | 0.069 | F27 | 28 | 300 | 0.598 | ||
| H9 | 21.15 | 130 | 0.011 | F28 | 48 | 300 | 0.598 | ||
| H10 | 21.15 | 130 | 0.058 | F29 | 63 | 300 | 0.598 | ||
| 氢Claude制冷循环系统 | F1 | 198 | 300 | 0.598 | F30 | 78 | 300 | 0.598 | |
| F2 | 276.8 | 800 | 0.598 | F31 | 100 | 300 | 0.598 | ||
| F3 | 253.2 | 800 | 0.598 | N1 | 78.06 | 110 | 5.580 | ||
| F4 | 226.3 | 800 | 1.178 | N2 | 78.09 | 200 | 5.580 | ||
| F5 | 297.7 | 1800 | 1.178 | N3 | 83.65 | 200 | 5.580 | ||
| F6 | 253.2 | 1800 | 1.178 | N4 | 78.06 | 110 | 0.732 | ||
| F7 | 170 | 1800 | 1.178 | N5 | 78.09 | 200 | 0.732 | ||
| F8 | 80 | 1800 | 1.178 | N6 | 83.65 | 200 | 6.312 | ||
| F9 | 65 | 1800 | 1.178 | N7 | 190.2 | 200 | 6.312 | ||
| F10 | 65 | 1800 | 0.598 | R1 | 187.2 | 300 | 1.976 | ||
| F11 | 65 | 1800 | 0.580 | ORC系统 | R2 | 187.6 | 1000 | 1.976 | |
| F12 | 60.98 | 1500 | 0.580 | R3 | 187.6 | 1000 | 1.559 | ||
| F13 | 37.51 | 1500 | 0.580 | R4 | 187.6 | 1000 | 0.418 | ||
| F14 | 34.67 | 1200 | 0.580 | R5 | 226.3 | 1000 | 0.418 | ||
| F15 | 30 | 800 | 0.580 | R6 | 226.3 | 1000 | 1.559 | ||
| F16 | 32.02 | 800 | 0.580 | R7 | 226.3 | 1000 | 1.976 | ||
| F17 | 55.04 | 800 | 0.580 | R8 | 190.2 | 300 | 1.976 | ||
| F18 | 59.93 | 800 | 0.580 |
表2 工艺模拟流股参数
Table 2 Flow parameters for process simulation
| 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) | 系统 | 流股 | 温度/K | 压力/kPa | 质量流量/(kg/s) |
|---|---|---|---|---|---|---|---|---|---|
| 原料氢液化系统 | H0 | 300 | 2100 | 0.069 | 氢Claude制冷循环系统 | F19 | 79.31 | 800 | 0.580 |
| H1 | 170 | 2100 | 0.069 | F20 | 96.98 | 800 | 0.580 | ||
| H2 | 80 | 2100 | 0.069 | F21 | 198.1 | 800 | 0.580 | ||
| H3 | 65 | 2100 | 0.069 | F22 | 50 | 1800 | 0.598 | ||
| H4 | 50 | 2100 | 0.069 | F23 | 40 | 1800 | 0.598 | ||
| H5 | 40 | 2100 | 0.069 | F24 | 30 | 1800 | 0.598 | ||
| H6 | 30 | 2100 | 0.069 | F25 | 24.58 | 300 | 0.598 | ||
| H7 | 26 | 2100 | 0.069 | F26 | 24.58 | 300 | 0.598 | ||
| H8 | 21.15 | 130 | 0.069 | F27 | 28 | 300 | 0.598 | ||
| H9 | 21.15 | 130 | 0.011 | F28 | 48 | 300 | 0.598 | ||
| H10 | 21.15 | 130 | 0.058 | F29 | 63 | 300 | 0.598 | ||
| 氢Claude制冷循环系统 | F1 | 198 | 300 | 0.598 | F30 | 78 | 300 | 0.598 | |
| F2 | 276.8 | 800 | 0.598 | F31 | 100 | 300 | 0.598 | ||
| F3 | 253.2 | 800 | 0.598 | N1 | 78.06 | 110 | 5.580 | ||
| F4 | 226.3 | 800 | 1.178 | N2 | 78.09 | 200 | 5.580 | ||
| F5 | 297.7 | 1800 | 1.178 | N3 | 83.65 | 200 | 5.580 | ||
| F6 | 253.2 | 1800 | 1.178 | N4 | 78.06 | 110 | 0.732 | ||
| F7 | 170 | 1800 | 1.178 | N5 | 78.09 | 200 | 0.732 | ||
| F8 | 80 | 1800 | 1.178 | N6 | 83.65 | 200 | 6.312 | ||
| F9 | 65 | 1800 | 1.178 | N7 | 190.2 | 200 | 6.312 | ||
| F10 | 65 | 1800 | 0.598 | R1 | 187.2 | 300 | 1.976 | ||
| F11 | 65 | 1800 | 0.580 | ORC系统 | R2 | 187.6 | 1000 | 1.976 | |
| F12 | 60.98 | 1500 | 0.580 | R3 | 187.6 | 1000 | 1.559 | ||
| F13 | 37.51 | 1500 | 0.580 | R4 | 187.6 | 1000 | 0.418 | ||
| F14 | 34.67 | 1200 | 0.580 | R5 | 226.3 | 1000 | 0.418 | ||
| F15 | 30 | 800 | 0.580 | R6 | 226.3 | 1000 | 1.559 | ||
| F16 | 32.02 | 800 | 0.580 | R7 | 226.3 | 1000 | 1.976 | ||
| F17 | 55.04 | 800 | 0.580 | R8 | 190.2 | 300 | 1.976 | ||
| F18 | 59.93 | 800 | 0.580 |
| 设备 | 流量/(kg/s) | 入口温度/ K | 出口温度/ K | 入口压力/ kPa | 出口压力/ kPa | 输入功率/ kW |
|---|---|---|---|---|---|---|
| C1 | 0.598 | 198 | 276.8 | 300 | 800 | 657.5 |
| C2 | 1.178 | 226.3 | 297.7 | 800 | 1800 | 1195 |
| P1 | 5.580 | 78.06 | 78.09 | 110 | 200 | 0.696 |
| P2 | 0.732 | 78.06 | 78.09 | 110 | 200 | 0.091 |
| P3 | 1.976 | 187.2 | 187.6 | 300 | 1000 | 2.833 |
| E1 | 0.58 | 65 | 60.98 | 1800 | 1500 | -21.85 |
| E2 | 0.58 | 37.51 | 34.67 | 1500 | 1200 | -10.61 |
| E3 | 0.58 | 34.67 | 30 | 1200 | 800 | -16.77 |
| E4 | 1.976 | 226.3 | 190.2 | 1000 | 300 | -105.5 |
表3 压缩机、泵、膨胀机的运行参数
Table 3 The operating parameters of compressor, pump and expander
| 设备 | 流量/(kg/s) | 入口温度/ K | 出口温度/ K | 入口压力/ kPa | 出口压力/ kPa | 输入功率/ kW |
|---|---|---|---|---|---|---|
| C1 | 0.598 | 198 | 276.8 | 300 | 800 | 657.5 |
| C2 | 1.178 | 226.3 | 297.7 | 800 | 1800 | 1195 |
| P1 | 5.580 | 78.06 | 78.09 | 110 | 200 | 0.696 |
| P2 | 0.732 | 78.06 | 78.09 | 110 | 200 | 0.091 |
| P3 | 1.976 | 187.2 | 187.6 | 300 | 1000 | 2.833 |
| E1 | 0.58 | 65 | 60.98 | 1800 | 1500 | -21.85 |
| E2 | 0.58 | 37.51 | 34.67 | 1500 | 1200 | -10.61 |
| E3 | 0.58 | 34.67 | 30 | 1200 | 800 | -16.77 |
| E4 | 1.976 | 226.3 | 190.2 | 1000 | 300 | -105.5 |
| 参数 | 本研究 | Leuna [ | 中科富海[ |
|---|---|---|---|
| 流程 | 液氮预冷的Claude氢液化系统+ORC系统 | 液氮预冷的Claude氢液化系统 | 液氮预冷的双压Claude氢液化系统 |
| 产量/(t/d) | 5 | 5 | 5 |
| 原料氢压力/kPa | 2100 | 2400 | 2500 |
| 原料氢温度/K | 300 | <313 | 310 |
| 液氢压力/kPa | 130 | 130 | 150 |
| 液氢温度/K | 21.15 | 21 | 21.5 |
| 压缩机效率/% | 85 | 65~70 | — |
| 膨胀机效率/% | 85 | 85 | — |
| 换热器级数 | 7 | 8 | 8 |
| 比能耗/(kWh/kg) | 7.93~8.22 | 11.9 | 11 |
| 㶲效率/% | 42.14 | 23.6 | 26.2 |
表4 氢液化系统比较
Table 4 Comparison of hydrogen liquefaction systems
| 参数 | 本研究 | Leuna [ | 中科富海[ |
|---|---|---|---|
| 流程 | 液氮预冷的Claude氢液化系统+ORC系统 | 液氮预冷的Claude氢液化系统 | 液氮预冷的双压Claude氢液化系统 |
| 产量/(t/d) | 5 | 5 | 5 |
| 原料氢压力/kPa | 2100 | 2400 | 2500 |
| 原料氢温度/K | 300 | <313 | 310 |
| 液氢压力/kPa | 130 | 130 | 150 |
| 液氢温度/K | 21.15 | 21 | 21.5 |
| 压缩机效率/% | 85 | 65~70 | — |
| 膨胀机效率/% | 85 | 85 | — |
| 换热器级数 | 7 | 8 | 8 |
| 比能耗/(kWh/kg) | 7.93~8.22 | 11.9 | 11 |
| 㶲效率/% | 42.14 | 23.6 | 26.2 |
| [1] | 中国氢能联盟. 中国氢能源及燃料电池产业发展报告[M]. 北京: 人民日报出版社, 2019. |
| China Hydrogen Alliance. China Hydrogen Energy and Fuel Cell Industry Development Report[M]. Beijing: People’s Daily Publishing House, 2019. | |
| [2] | 向巧, 胡晓煜, 王曼, 等. 关于氢能航空动力发展的认识与思考[J]. 航空发动机, 2024, 50(1): 1-9. |
| Xiang Q, Hu X Y, Wang M, et al. Observations on the development of hydrogen-powered aircraft propulsion system[J]. Aeroengine, 2024, 50(1): 1-9. | |
| [3] | 赖耀胜, 李龙. 氢能飞机发展现状分析[J]. 航空动力, 2021(6): 37-40. |
| Lai Y S, Li L. Hydrogen powered aircraft[J]. Aerospace Power, 2021(6): 37-40. | |
| [4] | 韩玉琪. 航空氢动力研发进展[J]. 大飞机, 2024(8): 15-19. |
| Han Y Q. Research and development progress of aviation hydrogen power[J]. Jetliner, 2024(8): 15-19. | |
| [5] | 陈双涛, 周楷淼, 赖天伟, 等. 大规模氢液化方法与装置[J]. 真空与低温, 2020, 26(3): 173-178. |
| Chen S T, Zhou K M, Lai T W, et al. Large-scale hydrogen liquefaction methods and devices[J]. Vacuum and Cryogenics, 2020, 26(3): 173-178. | |
| [6] | 张振扬, 妙丛, 王峰, 等. 规模化氢液化装置现状及未来技术路线分析[J]. 化工进展, 2022, 41(12): 6261-6274. |
| Zhang Z Y, Miao C, Wang F, et al. Analysis of present status and future technical route on large-scale hydrogen liquefaction plant[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6261-6274. | |
| [7] | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
| Lyu C, Wang J Z, Zhu W P, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
| [8] | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
| [9] | Abdi A, Chiu J, Martin V. State of the art in hydrogen liquefaction[C]//Proceedings of the ISES Solar World Congress 2019. International Solar Energy Society, 2019: 1311-1320. |
| [10] | Faramarzi S, Nainiyan S M M, Mafi M, et al. A novel hydrogen liquefaction process based on LNG cold energy and mixed refrigerant cycle[J]. International Journal of Refrigeration, 2021, 131: 263-274. |
| [11] | Chang H M, Kim B H, Choi B. Hydrogen liquefaction process with Brayton refrigeration cycle to utilize the cold energy of LNG[J]. Cryogenics, 2020, 108: 103093. |
| [12] | Yuksel Y E, Ozturk M, Dincer I. Energetic and exergetic assessments of a novel solar power tower based multigeneration system with hydrogen production and liquefaction[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13071-13084. |
| [13] | Riaz A, Qyyum M A, Min S, et al. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: energy and exergy perspectives[J]. Applied Energy, 2021, 301: 117471. |
| [14] | Yuksel Y E, Ozturk M, Dincer I. Analysis and performance assessment of a combined geothermal power-based hydrogen production and liquefaction system[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10268-10280. |
| [15] | Sleiti A K, Al-Ammari W A. A novel dual-pressure single-mixed refrigerant cryogenic system for hydrogen precooling process: optimization and thermoeconomic analysis[J]. International Journal of Hydrogen Energy, 2024, 85: 893-908. |
| [16] | Bian J, Yang J, Li Y X, et al. Thermodynamic and economic analysis of a novel hydrogen liquefaction process with LNG precooling and dual-pressure Brayton cycle[J]. Energy Conversion and Management, 2021, 250: 114904. |
| [17] | Seyam S, Dincer I, Agelin-Chaab M. Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system[J]. Journal of Cleaner Production, 2020, 243: 118562. |
| [18] | Yang J, Li Y Z, Tan H B, et al. Optimization and analysis of a hydrogen liquefaction process integrated with the liquefied natural gas gasification and organic Rankine cycle[J]. Journal of Energy Storage, 2023, 59: 106490. |
| [19] | 王昊成, 杨敬瑶, 董学强, 等. 氢液化与低温高压储氢技术发展现状[J]. 洁净煤技术, 2023, 29(3): 102-113. |
| Wang H C, Yang J Y, Dong X Q, et al. Review on hydrogen liquefaction and cryo-compression hydrogen storage technologies[J]. Clean Coal Technology, 2023, 29(3): 102-113. | |
| [20] | Yang J, Li Y Z, Tan H B. Integrated hydrogen liquefaction process with a dual-pressure organic Rankine cycle-assisted LNG regasification system: design, comparison, and analysis[J]. Applied Energy, 2023, 347: 121372. |
| [21] | Wang H C, Yang J Y, Dong X Q, et al. Thermodynamic analysis of a dual reverse Brayton cycle (dual-RBC) hydrogen liquefaction process precooled by mixed-refrigerant[J]. International Journal of Hydrogen Energy, 2023, 48(80): 31254-31266. |
| [22] | Rezaie A H, Ziabasharhagh M, Mafi M. Applicability of the common equations of state for modeling hydrogen liquefaction processes in Aspen HYSYS[J]. Gas Processing Journal, 2021, 9(1): 11-28. |
| [23] | 曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669. |
| Cao X W, Yang J, Bian J, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. | |
| [24] | Sun H, Geng J L, Wang C, et al. Optimization of a hydrogen liquefaction process utilizing mixed refrigeration considering stages of ortho-para hydrogen conversion[J]. International Journal of Hydrogen Energy, 2022, 47(39): 17271-17284. |
| [25] | Berstad D O, Stang J H, Nekså P. Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4512-4523. |
| [26] | 孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117. |
| Sun X, Zhu G T, Pei A G. Industrialization and research progress of hydrogen liquefier[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. | |
| [27] | 熊联友, 杨坤, 孔巍, 等. 5 t/d氢液化装置的研制[J]. 真空与低温, 2024, 30(4): 349-354. |
| Xiong L Y, Yang K, Kong W, et al. Development of a 5 t/d hydrogen liquefaction unit[J]. Vacuum and Cryogenics, 2024, 30(4): 349-354. |
| [1] | 彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461. |
| [2] | 丁昊, 王林, 刘豪. R290/R245fa汽液相平衡混合规则对比研究[J]. 化工学报, 2025, 76(S1): 9-16. |
| [3] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [4] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [5] | 陆学瑞, 周帼彦, 方琦, 俞孟正, 张秀成, 涂善东. 固体氧化物燃料电池外重整器积炭效应数值模拟研究[J]. 化工学报, 2025, 76(7): 3295-3304. |
| [6] | 赵世颖, 左志帅, 贺梦颖, 安华良, 赵新强, 王延吉. Co-Pt/HAP的制备及其催化1,2-丙二醇氨化反应[J]. 化工学报, 2025, 76(7): 3305-3315. |
| [7] | 唐银香, 朱风, 范莹莹, 龙雨欣, 代雍, 邓春玲, 黄小凤. 制备条件对改性电石渣低温共脱除COS和CS2的影响[J]. 化工学报, 2025, 76(7): 3639-3650. |
| [8] | 李同辉, 回天力, 郑涛, 张睿, 刘海燕, 刘植昌, 徐春明, 孟祥海. 氢氧化物协同钯双活性位点用于大电流和pH通用析氢反应[J]. 化工学报, 2025, 76(7): 3671-3685. |
| [9] | 王金江, 鲁振杰, 安维峥, 杨风允, 秦小刚. ORC发电系统工艺过程预警诊断技术研究与展望[J]. 化工学报, 2025, 76(7): 3137-3152. |
| [10] | 王佳丽, 刘芳, 陈伟, 张晓英, 李生廷, 田甜, 信翔宇, 刘光, 宋宇飞. 模板限域原位制备镁基纳米复合材料进展[J]. 化工学报, 2025, 76(7): 3172-3184. |
| [11] | 陈佳祥, 周伟, 张学伟, 王丽杰, 黄玉明, 于洋, 孙苗婷, 李宛静, 袁骏舒, 张宏博, 孟晓晓, 高继慧, 赵广播. 脉冲电压下二维PEMWE模型的制氢特性仿真研究[J]. 化工学报, 2025, 76(7): 3521-3530. |
| [12] | 王智超, 刘冬妹, 熊敏, 周利, 吉旭, 党亚固. 可再生能源发电制氢与炼油企业氢气网络耦合系统的多周期调度优化[J]. 化工学报, 2025, 76(6): 2802-2812. |
| [13] | 卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700. |
| [14] | 龚丽芳, 任美慧, 蒋吉春, 郭光召, 胡红云, 黄永达, 姚洪. 垃圾焚烧烟气中芳香烃化合物在线监测和选择性催化还原脱除研究[J]. 化工学报, 2025, 76(6): 3018-3028. |
| [15] | 李芳, 王怡然, 张鹏鹤, 刘月明, 何鸣元. 烃转化过程中的氢转移反应[J]. 化工学报, 2025, 76(6): 2483-2504. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号