| [1] |
Siddhantakar A, Santillán-Saldivar J, Kippes T, et al. Helium resource global supply and demand: geopolitical supply risk analysis[J]. Resources, Conservation and Recycling, 2023, 193: 106935.
|
| [2] |
Anderson S T. Economics, helium, and the U.S. federal helium reserve: summary and outlook[J]. Natural Resources Research, 2018, 27(4): 455-477.
|
| [3] |
Li J, Wang X B, Xu Z S, et al. Helium resources accumulation regulations and their development prospects in China[J]. Journal of Natural Gas Geoscience, 2024, 9(5): 303-319.
|
| [4] |
Malinowski E, Karwan M H, Pinto J M, et al. A mixed-integer programming strategy for liquid helium global supply chain planning[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 110: 168-188.
|
| [5] |
Olafsdottir A H, Sverdrup H U. Assessing the past and future sustainability of global helium resources, extraction, supply and use, using the integrated assessment model WORLD7[J]. Biophysical Economics and Sustainability, 2020, 5(2): 6.
|
| [6] |
Provornaya I V, Filimonova I V, Eder L V, et al. Prospects for the global helium industry development[J]. Energy Reports, 2022, 8: 110-115.
|
| [7] |
Zhang C G, Li C J, Jia W L, et al. Thermodynamic study on thermal insulation schemes for liquid helium storage tank[J]. Applied Thermal Engineering, 2021, 195: 117185.
|
| [8] |
张哲, 王春燕, 王秋晨, 等. 浅谈中国氦气供应链技术壁垒与发展方向[J]. 油气与新能源, 2022, 34(2): 14-19.
|
|
Zhang Z, Wang C Y, Wang Q C, et al. Barries and development directions of helium supply chain in China[J]. Petroleum and New Energy, 2022, 34(2): 14-19.
|
| [9] |
Meerbeke R C. Thermal stratification and sloshing in liquid helium trailers[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1995: 199-206.
|
| [10] |
Bora M S, Rugaiganisa, Nakagawa S, et al. Experimental investigation on heat leak into a liquid helium dewar[J]. Cryogenics, 1990, 30(11): 942-946.
|
| [11] |
Teissier A, Bass C. Liquid helium storage for Ariane 5 main stage oxygen tank pressurization[C]//31st Joint Propulsion Conference and Exhibit. AIAA, 1995: 2956.
|
| [12] |
Benda, Serio L, Perret P, et al. The liquid helium storage system for the Large Hadron Collider[R]. Geneva: CERN, 2011.
|
| [13] |
Wang H R, Wang B, Xu T C, et al. Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects[J]. Fuel, 2024, 365: 131247.
|
| [14] |
Rotenberg Y. Numerical simulation of self pressurization in a small cryogenic tank[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1986: 963-971.
|
| [15] |
Gursu S, Sherif S A, Veziroglu T N, et al. Analysis and optimization of thermal stratification andSelf-pressurization effects in liquid hydrogen storage systems(part 2): Model results and conclusions[J]. Journal of Energy Resources Technology, 1993, 115(3): 228-231.
|
| [16] |
Kang M, Kim J, You H, et al. Experimental investigation of thermal stratification in cryogenic tanks[J]. Experimental Thermal and Fluid Science, 2018, 96: 371-382.
|
| [17] |
Wang H R, Wang B, Pan Q W, et al. Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30530-30545.
|
| [18] |
Al Ghafri S Z S, Swanger A, Jusko V, et al. Modelling of liquid hydrogen boil-off[J]. Energies, 2022, 15(3): 1149.
|
| [19] |
Daigle M J, Smelyanskiy V N, Boschee J, et al. Temperature stratification in a cryogenic fuel tank[J]. Journal of Thermophysics and Heat Transfer, 2012, 27(1): 116-126.
|
| [20] |
Majumdar A, Valenzuela J, LeClair A, et al. Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank[J]. Cryogenics, 2016, 74: 113-122.
|
| [21] |
Bolshinskiy L, Hedayat A, Hastings L, et al. Tank system integrated model: a cryogenic tank performance prediction program[R]. Washington, D.C.: NASA, 2017.
|
| [22] |
Wang L, Li Y Z, Zhang F N, et al. Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments[J]. Cryogenics, 2015, 72: 161-171.
|
| [23] |
Seo M, Jeong S. Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model[J]. Cryogenics, 2010, 50(9): 549-555.
|
| [24] |
Holman J P. Heat Transfer[M]. New York: McGraw-Hill, 2010.
|
| [25] |
van Dresar N, Lin C, Hasan M. Self-pressurization of a flightweight liquid hydrogen tank—effects of fill level at low wall heat flux[C]//30th Aerospace Sciences Meeting and Exhibit. AIAA, 1992: 818.
|
| [26] |
Hastings L, Flachbart R, Martién J, et al. Spray bar zero-gravity vent system for on-orbit liquid hydrogen storage[R]. Washington, D.C.: NASA, 2003.
|
| [27] |
Zuo Z Q, Jiang W B, Qin X J, et al. A numerical model for liquid-vapor transition in self-pressurized cryogenic containers[J]. Applied Thermal Engineering, 2021, 193: 117005.
|
| [28] |
王浩任, 王博, 罗若尹, 等. 液氢储罐自增压过程的动态模拟[J]. 工程热物理学报, 2022, 43(1): 35-42.
|
|
Wang H R, Wang B, Luo R Y, et al. Dynamic simulation of self-pressurization process of liquid hydrogen tank[J]. Journal of Engineering Thermophysics, 2022, 43(1): 35-42.
|
| [29] |
傅娟. 低温推进剂贮存中的自增压现象及液体量测量方法研究[D]. 长沙: 国防科学技术大学, 2014.
|
|
Fu J. Research on the self-pressurization phenomenon and liquid mass gauge of cryogenic propellant storage[D]. Changsha: National University of Defense Technology, 2014.
|
| [30] |
Aydelott J C. Self pressurization of liquid hydrogen tankage[R]. Washington, D.C.: NASA, 1967.
|