化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4440-4448.DOI: 10.11949/0438-1157.20241377
曹潇风1,2(
), 张华海2, 王江云1, 王利民2,3(
)
收稿日期:2024-12-02
修回日期:2025-02-02
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
王利民
作者简介:曹潇风(1998—),男,硕士研究生,xfcao@ipe.ac.cn
基金资助:
Xiaofeng CAO1,2(
), Huahai ZHANG2, Jiangyun WANG1, Limin WANG2,3(
)
Received:2024-12-02
Revised:2025-02-02
Online:2025-09-25
Published:2025-10-23
Contact:
Limin WANG
摘要:
为解决常规层流流量计(laminar flow meter,LFM)线性度不佳的问题,设计了一款内有导锥、环形截面的层流元件,并且通过将引压孔设置在层流段的方式进一步提高了压差-流量线性度。采用计算流体力学(computational fluid dynamics,CFD)仿真技术确定了合理的导锥角度为30°,对流道尺寸分析发现,流道大小对测量段压差影响较大,流量误差随流道的增大而减小。以空气、N2、CO2气体为工质,探究了层流元件对不同气体的适用性,三者的流量误差均小于2%。借助CFD仿真技术对新型层流流量计进行模拟计算能够得到流道沿程压力损失和内部流场的详细数据,可以为实验提供有用的流动细节、可行的设计思路,从而提高实验效率。
中图分类号:
曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448.
Xiaofeng CAO, Huahai ZHANG, Jiangyun WANG, Limin WANG. Structural design and flow characteristics of conical gas laminar flow element[J]. CIESC Journal, 2025, 76(9): 4440-4448.
| r1/mm | r2/mm | L/mm | Le/mm |
|---|---|---|---|
| 8.0 | 7.7 | 180.0 | 20.0 |
| 8.0 | 7.8 | 180.0 | 15.0 |
| 8.0 | 7.9 | 180.0 | 10.0 |
表1 层流流量计参数设计
Table 1 Parameter design of laminar flow meter
| r1/mm | r2/mm | L/mm | Le/mm |
|---|---|---|---|
| 8.0 | 7.7 | 180.0 | 20.0 |
| 8.0 | 7.8 | 180.0 | 15.0 |
| 8.0 | 7.9 | 180.0 | 10.0 |
| 配置 | 计算时间/s | 加速比 |
|---|---|---|
| 16 CPU | 5.040 | — |
| 1 GPU | 0.400 | 12.60 |
| 2 GPU | 0.275 | 18.32 |
| 3 GPU | 0.250 | 20.00 |
| 4 GPU | 0.250 | 20.00 |
| 5 GPU | 0.255 | 19.76 |
| 6 GPU | 0.290 | 17.38 |
表2 不同计算配置的加速情况
Table 2 Acceleration ratio of different computing configurations
| 配置 | 计算时间/s | 加速比 |
|---|---|---|
| 16 CPU | 5.040 | — |
| 1 GPU | 0.400 | 12.60 |
| 2 GPU | 0.275 | 18.32 |
| 3 GPU | 0.250 | 20.00 |
| 4 GPU | 0.250 | 20.00 |
| 5 GPU | 0.255 | 19.76 |
| 6 GPU | 0.290 | 17.38 |
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 854.10 | 0.2 | 0.20 | 0.50 |
| 2987.80 | 0.7 | 0.70 | 0.55 |
| 42354.14 | 10 | 9.87 | 1.31 |
| 84711.21 | 20 | 19.74 | 1.31 |
| 127050.22 | 30 | 29.60 | 1.32 |
| 169448.27 | 40 | 39.48 | 1.30 |
| 211814.38 | 50 | 49.35 | 1.29 |
| 232998.74 | 55 | 54.29 | 1.29 |
表3 环隙流道尺寸为0.1 mm时的模拟数据
Table 3 Simulated data of annular gap type laminar flow meter(0.1 mm)
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 854.10 | 0.2 | 0.20 | 0.50 |
| 2987.80 | 0.7 | 0.70 | 0.55 |
| 42354.14 | 10 | 9.87 | 1.31 |
| 84711.21 | 20 | 19.74 | 1.31 |
| 127050.22 | 30 | 29.60 | 1.32 |
| 169448.27 | 40 | 39.48 | 1.30 |
| 211814.38 | 50 | 49.35 | 1.29 |
| 232998.74 | 55 | 54.29 | 1.29 |
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1073.81 | 2 | 1.98 | 1.21 |
| 3759.14 | 7 | 6.92 | 1.19 |
| 6444.14 | 12 | 11.86 | 1.19 |
| 9129.31 | 17 | 16.80 | 1.19 |
| 10740.02 | 20 | 19.76 | 1.20 |
| 16107.14 | 30 | 29.64 | 1.21 |
| 21476.71 | 40 | 39.52 | 1.21 |
| 30351.07 | 56.5 | 55.85 | 1.16 |
表4 环隙流道尺寸为0.2 mm时的模拟数据
Table 4 Simulated data of annular gap type laminar flow meter (0.2 mm)
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1073.81 | 2 | 1.98 | 1.21 |
| 3759.14 | 7 | 6.92 | 1.19 |
| 6444.14 | 12 | 11.86 | 1.19 |
| 9129.31 | 17 | 16.80 | 1.19 |
| 10740.02 | 20 | 19.76 | 1.20 |
| 16107.14 | 30 | 29.64 | 1.21 |
| 21476.71 | 40 | 39.52 | 1.21 |
| 30351.07 | 56.5 | 55.85 | 1.16 |
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 160.13 | 1 | 0.99 | 0.74 |
| 800.65 | 5 | 4.96 | 0.74 |
| 1601.14 | 10 | 9.92 | 0.75 |
| 2722.14 | 17 | 16.87 | 0.74 |
| 3202.414 | 20 | 19.85 | 0.74 |
| 4803.04 | 30 | 29.77 | 0.75 |
| 6406.47 | 40 | 39.71 | 0.72 |
| 8018.38 | 50 | 49.71 | 0.60 |
| 8825.47 | 55 | 54.68 | 0.59 |
表5 环隙流道尺寸为0.3 mm时的模拟数据
Table 5 Simulated data of annular gap type laminar flow meter (0.3 mm)
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 160.13 | 1 | 0.99 | 0.74 |
| 800.65 | 5 | 4.96 | 0.74 |
| 1601.14 | 10 | 9.92 | 0.75 |
| 2722.14 | 17 | 16.87 | 0.74 |
| 3202.414 | 20 | 19.85 | 0.74 |
| 4803.04 | 30 | 29.77 | 0.75 |
| 6406.47 | 40 | 39.71 | 0.72 |
| 8018.38 | 50 | 49.71 | 0.60 |
| 8825.47 | 55 | 54.68 | 0.59 |
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 29.76 | 0.2 | 0.196 | 1.896 |
| 148.82 | 1 | 0.981 | 1.873 |
| 446.48 | 3 | 2.944 | 1.866 |
| 1041.63 | 7 | 6.868 | 1.881 |
| 1487.98 | 10 | 9.811 | 1.886 |
| 2976.20 | 20 | 19.624 | 1.878 |
| 4463.78 | 30 | 29.433 | 1.889 |
| 5953.93 | 40 | 39.259 | 1.853 |
| 8203.17 | 55 | 54.090 | 1.655 |
表6 氮气的模拟数据
Table 6 Simulated data of nitrogen
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 29.76 | 0.2 | 0.196 | 1.896 |
| 148.82 | 1 | 0.981 | 1.873 |
| 446.48 | 3 | 2.944 | 1.866 |
| 1041.63 | 7 | 6.868 | 1.881 |
| 1487.98 | 10 | 9.811 | 1.886 |
| 2976.20 | 20 | 19.624 | 1.878 |
| 4463.78 | 30 | 29.433 | 1.889 |
| 5953.93 | 40 | 39.259 | 1.853 |
| 8203.17 | 55 | 54.090 | 1.655 |
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 24.51 | 0.2 | 0.196 | 1.895 |
| 85.75 | 0.7 | 0.686 | 1.946 |
| 245.14 | 2 | 1.9621 | 1.896 |
| 612.98 | 5 | 4.906 | 1.875 |
| 1225.84 | 10 | 9.812 | 1.884 |
| 2084.36 | 17 | 16.683 | 1.864 |
| 2452.63 | 20 | 19.631 | 1.846 |
| 2945.01 | 24 | 23.572 | 1.784 |
| 3687.42 | 30 | 29.514 | 1.620 |
表7 二氧化碳的模拟数据
Table 7 Simulated data of carbon dioxide
| ΔP/Pa | qr/(L/min) | qt/(L/min) | δ/% |
|---|---|---|---|
| 24.51 | 0.2 | 0.196 | 1.895 |
| 85.75 | 0.7 | 0.686 | 1.946 |
| 245.14 | 2 | 1.9621 | 1.896 |
| 612.98 | 5 | 4.906 | 1.875 |
| 1225.84 | 10 | 9.812 | 1.884 |
| 2084.36 | 17 | 16.683 | 1.864 |
| 2452.63 | 20 | 19.631 | 1.846 |
| 2945.01 | 24 | 23.572 | 1.784 |
| 3687.42 | 30 | 29.514 | 1.620 |
| [1] | Suga S, Okajima M, Fujiwara K, et al. “Cation flow” method: a new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems[J]. Journal of the American Chemical Society, 2001, 123(32): 7941-7942. |
| [2] | Sagi H, Zhao Y B, Wereley S T. Wide range flow sensor—Vacuum through viscous flow conditions[J]. Journal of Vacuum Science & Technology A-Vacuum, Surfaces, and Films, 2004, 22(5): 1992-1999. |
| [3] | Wang B, Zhang N, Cao Q W, et al. Evaluation approach to dynamic characteristic of turbine flowmeters considering calibration system response[J]. Flow Measurement and Instrumentation, 2018, 64: 126-132. |
| [4] | 贺登辉, 陈森林, 白博峰. 基于Chisholm模型的V锥流量计气液分层流测量新模型[J]. 化工学报, 2018, 69(8): 3428-3435. |
| He D H, Chen S L, Bai B F. New model for measuring stratified gas-liquid flow by Chisholm-model-based V-cone flowmeter[J]. CIESC Journal, 2018, 69(8): 3428-3435. | |
| [5] | Zhang Z Z, Ding D W, Zhang Z G. Research on fine chemical process and equipment detection and computer monitoring technology[J]. Journal of Physics: Conference Series, 2021, 1992(2): 022152. |
| [6] | 娄锋炎, 尹佳滨, 段笑南, 等. 连续微反应加氢技术在脱保护反应中的应用[J]. 化工学报, 2021, 72(2): 761-771. |
| Lou F Y, Yin J B, Duan X N, et al. Application of continuous micro-reactor hydrogenation technology in deprotection reaction[J]. CIESC Journal, 2021, 72(2): 761-771. | |
| [7] | 于海鹏, 陈来夫. 精对苯二甲酸装置中空气流量测量的研究与优化[J]. 石油化工自动化, 2024, 60(3): 96-97, 102. |
| Yu H P, Chen L F. Researgh and optimization of air flow measurement in a purified terephthalic acid plant[J]. Automation in Petro-Chemical Industry, 2024, 60(3): 96-97, 102. | |
| [8] | Wang Z X, Xu Y, Liu T J, et al. Development of a measurement device for micro gas flowrate based on laminar flow element with micro-curved surface[J]. Micromachines, 2024, 15(5): 660. |
| [9] | Dong S S, Huang H Q, Peng H D, et al. Development of the pressure potential differential type laminar flow transducer for gas flow measurement[J]. Journal of Electronic Measurement and Instrumentation, 2023, 35(10): 130-136. |
| [10] | Priestman G H, Boucher R F. The biased laminar by-pass fluidic flowmeter[J]. Journal of Fluids Engineering, 2005, 127(6): 1199-1204. |
| [11] | Wang Q Q, Dong S S, Li G Z, et al. Numerical simulation of the laminar flow sensing element of pressure potential differential type[J]. Chinese Journal of Sensors and Actuators, 2020, 33(11): 1587-1593. |
| [12] | 王伯年, 王荣杰, 王利民, 等. 层流流量计设计参数的选择与确定[J]. 仪器仪表学报, 2000, 21(5): 474-476. |
| Wang B N, Wang R J, Wang L M, et al. On the choice and determination of design parameters for laminar flow meters[J]. Chinese Journal of Scientific Instrument, 2000, 21(5): 474-476. | |
| [13] | Wang X L, Zhao Y J, Yu H C, et al. Research on dynamic characteristics of laminar flow meter[J]. Flow Measurement and Instrumentation, 2024, 97: 102619. |
| [14] | Robert F B, John D W, Michael R M. Modeling laminar flow meters for process gases[J]. Proceedings of Flomeco, 2010, 8: 13-15. |
| [15] | Song J, Xie D L, Xu Y, et al. Gas micro and small flow measurement based on conical laminar flow element[J]. Chemical Engineering of Oil and Gas, 2023, 52(6): 110-116. |
| [16] | Wright J D, Cobu T, Berg R F, et al. Calibration of laminar flow meters for process gases[J]. Flow Measurement and Instrumentation, 2012, 25: 8-14. |
| [17] | Feng C C, Lin W T, Yang C T. Laminar flow meter with straight glass capillary[J]. MAPAN, 2011, 26(3): 237-245. |
| [18] | Berg R F. Simple flow meter and viscometer of high accuracy for gases[J]. Metrologia, 2005, 42(1): 11-23. |
| [19] | Nishimura R, Kawashima K, Kagawa T. Analysis of laminar flow meter with flute-type cross section laminar elements[C]//2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing. Beijing, China. IEEE, 2008:1110-1114. |
| [20] | 张嘉祥. 层流流量计计算数学模型和标定方法的研究[J]. 中国测试, 2009, 35(5): 14-17. |
| Zhang J X. Research on flow calculation mathematic model and calibration of laminar flow meter[J]. China Measurement & Test, 2009, 35(5): 14-17. | |
| [21] | Nuszkowski J, Schwamb J, Esposito J. A novel gas divider using nonlinear laminar flow[J]. Flow Measurement and Instrumentation, 2016, 52: 255-260. |
| [22] | Wang X L, Chen Y C, Jiang Y X, et al. Rectangle-gap-type laminar flow meter with inward pressure taps[J]. Flow Measurement and Instrumentation, 2021, 79: 101893. |
| [23] | Pena F L, Diaz A D, Lema M R, et al. A new approach to laminar flowmeters[J]. Sensors, 2010, 10(12): 10560-10570. |
| [24] | 王剪, 豆峰, 赵晓东, 等. 差分式层流流量传感技术研究[J]. 传感技术学报, 2019, 32(12): 1790-1794, 1829. |
| Wang J, Dou F, Zhao X D, et al. Research on the differential type laminar flow sensor[J]. Chinese Journal of Sensors and Actuators, 2019, 32(12): 1790-1794, 1829. | |
| [25] | 黄浩钦. 压力位差式气体层流流量计研究[D]. 杭州: 中国计量大学, 2021. |
| Huang H Q. Study on pressure differential gas laminar flow meter[D]. Hangzhou: China Jiliang University, 2021. | |
| [26] | Pedro A, Morgado T, Navas H. An uncertainties simulation model applied to an automated laminar flowmeter[J]. Applied Sciences, 2020, 10: 888. |
| [27] | 张家庆, 刘朝晖, 李宇, 等. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161. |
| Zhang J Q, Liu Z H, Li Y, et al. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions[J]. CIESC Journal, 2022, 73(1): 153-161. | |
| [28] | 陈雨萱, 谢代梁, 崔骊水, 等. 环形间隙式层流元件设计及流量特性研究[J]. 电子测量与仪器学报, 2024, 38(4): 195-201. |
| Chen Y X, Xie D L, Cui L S, et al. Design and flow characterization of annular gap laminar flow elements[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(4): 195-201. | |
| [29] | Wojtkowiak J, Popiel C O. Inherently linear annular-duct-type laminar flowmeter[J]. Journal of Fluids Engineering, 2006, 128(1): 196-198. |
| [30] | Hoff D. The zero-Mach limit of compressible flows[J]. Communications in Mathematical Physics, 1998, 192(3): 543-554. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [5] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [6] | 解勤勤, 翁俊旗, 林振利, 叶光华, 周兴贵. 固定床反应器中甲醇制芳烃工业催化剂结构影响的研究[J]. 化工学报, 2025, 76(9): 4487-4498. |
| [7] | 张帅, 徐嘉宇, 华蕾娜, 葛蔚. 气固系统的CG-DPM与MP-PIC耦合模拟方法[J]. 化工学报, 2025, 76(9): 4412-4424. |
| [8] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [9] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [10] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [11] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [12] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [13] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [14] | 李科, 谢昊琳, 文键. 耦合多重蒸气冷却屏的液氢储罐绝热性能的多目标遗传算法优化[J]. 化工学报, 2025, 76(8): 4217-4227. |
| [15] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号